![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Biochemical engineering > Biotechnology > Genetic engineering
Plant biotechnology offers important opportunities for agriculture, horticul ture, and the food industry by generating new transgenic crop varieties with altered properties. This is likely to change farming practices, improve the quality of fresh and processed plant products, and reduce the impact of food production on the environment. The purpose of this series is to review the basic science that underpins plant biotechnology and to show how this knowledge is being used in directed plant breeding. It is intended for those involved in fundamental and applied research on transgenic plants in the academic and commercial sectors. The first volume deals with plant genes, how they work, and their transfer from one organism to another. Authors discuss the production and evaluation of the first generation of transgenic crops resistant to insects, viruses and herbicides, and consider aspects of gene regulation and targeting of their protein products to the correct cellular location. All the contributors are actively engaged in research in plant biotechnology and several are concerned directly with its commercial applications. Their chapters highlight the importance of a fundamental understanding of plant physiology, biochemistry, and cell and molecular biology for the successful genetic engineering of plants. This interdisciplinary approach, which focuses research from traditionally separate areas, is the key to further developments which are considered in subsequent volumes. Don Grierson Contributors Alan B. Bennett Mann Laboratory, Department of Vegetable Crops, University of California, Davis, CA 95616 John W. s."
This book, published by Springer since 1979, presents state-of-the-art discussions in modern genetics and genetic engineering. This focus affirms a commitment to publish important reviews of the broadest interest to geneticists and their colleagues in affiliated disciplines. Recent volumes have covered gene therapy research, genetic mapping, plant science and technology, transport protein biochemistry, and viral vectors in gene therapy, among other topics.
Plant biotechnology offers important opportunities for agriculture, horticul ture, and the food industry by generating new transgenic crop varieties with altered properties. This is likely to change farming practices, improve the quality of fresh and processed plant products, and reduce the impact of food production on the environment. The purpose of this series is to review the basic science that underpins plant biotechnology and to show how this knowledge is being used in directed plant breeding. It is intended for those involved in fundamental and applied research on transgenic plants in the academic and commercial sectors. The first volume deals with plant genes, how they work, and their transfer from one organism to another. Authors discuss the production and evaluation of the first generation of transgenic crops resistant to insects, viruses and herbicides, and consider aspects of gene regulation and targeting of their protein products to the correct cellular location. All the contributors are actively engaged in research in plant biotechnology and several are concerned directly with its commercial applications. Their chapters highlight the importance of a fundamental understanding of plant physiology, biochemistry, and cell and molecular biology for the successful genetic engineering of plants. This interdisciplinary approach, which focuses research from traditionally separate areas, is the key to further developments which are considered in subsequent volumes. Don Grierson Contributors Alan B. Bennett Mann Laboratory, Department of Vegetable Crops, University of California, Davis, CA 95616 John W. s."
Changing environmental conditions substantially affect genetic variation and its dynamics in forest ecosystems and various systems of plantations. In response to these challenges, the present book focuses on the response to stress in terms of case studies which address physiological and genetic characters as well as various metric traits. Furthermore a choice of studies is presented which refers to diversity and geographic variation of various species and site conditions, respectively. In addition, genetic resources are characterised and a variety of studies is compiled which address reproduction and migration as well as management aspects. Finally, a set of studies is presented which focus on forest tree breeding with respect to uncertain climatic futures.
"Leonardo's Choice: Genetic Technologies and Animals" is an edited collection of twelve essays and one dialogue focusing on the profound affect the use of animals in biotechnology is having on both humans and other species. Communicating crucial understandings of the integrated nature of the human and non-human world, these essays, unlike the majority of discussions of biotechnology, take seriously the impact of these technologies on animals themselves. This collection's central questions revolve around the disassociation Western ideas of creative freedom have from the impacts those ideas and practices have on the non-human world. "This transdisciplinary collection includes perspectives from the disciplines of philosophy, cultural theory, art and literary theory, history and theory of science, environmental studies, law, landscape architecture, history, and geography. Included authors span three continents and four countries." "Included essays contribute significantly to a growing scholarship surrounding "the question of the animal" emanating from philosophical, cultural and activist discourses. Its authors are at the forefront of the growing number of theorists and practitioners across the disciplines concerned with the impact of new technologies on the more-than-human world."
Genome Mapping and Molecular Breeding in Plants presents the current status of the elucidation and improvement of plant genomes of economic interest. The focus is on genetic and physical mapping, positioning, cloning, monitoring of desirable genes by molecular breeding and the most recent advances in genomics. The series comprises seven volumes: Cereals and Millets; Oilseeds; Pulses, Sugar and Tuber Crops; Fruits and Nuts; Vegetables; Technical Crops; and Forest Trees. Technical Crops includes plants of great agricultural importance. One chapter is devoted to cotton, the most important fiber crop on which significant progress in molecular genetic research has been made. Reviews on oil palm, coffee, tea, cocoa and rubber describe traditional breeding and preliminary molecular results. Chapters on forage crops, ornamentals, and medicinal and aromatic plants each cover a large number of crops and may serve as road maps for further molecular research.
Recent advances in plant cell and molecular biology have opened new avenues for the improvement of crop plants in the genus "Brassica" - oilseeds and vegetables of worldwide economic importance. This volume reviews advances in various areas of "Brassica" biotechnology. It covers the use of rapid-cycle brassicas, tissue culture and gene transfer, molecular genetics, biotic and abiotic stress resistance, and molecular farming. Contributors are world-leading international "Brassica" researchers. The volume is an invaluable reference for plant breeders, researchers and graduate students in the fields of plant biotechnology, agronomy, horticulture, genetics, and cell and molecular biology.
This volume collects new information on the genomics of saprophytic soil Pseudomonas, as well as functions related to genomic islands. It explores life styles in different settings and sheds further insights on the wide metabolic potential of this microbe for the removal of pollutants and production of added-value products. This volume also explores how Pseudomonas responds and reacts to environmental signals, including detection of cell density.
The book offers new concepts and ideas that broaden reader 's perception of modern science. Internationally established experts present the inspiring new science of complexity, which discovers new general laws covering wide range of science areas. The book offers a broader view on complexity based on the expertise of the related areas of chemistry, biochemistry, biology, ecology, and physics. Contains methodologies for assessing the complexity of systems that can be directly applied to proteomics and genomics, and network analysis in biology, medicine, and ecology.
Parasitic, bacterial and viral agents continue to challenge the welfare of humans, livestock, wild life and plants worldwide. The public health impact and financial consequences of these diseases are particularly hard on the already overburdened economies of developing countries especially in the tropics. Many of these disease agents utilize insect hosts (vectors) to achieve their transmission to mammals. In the past, these diseases were largely controlled by insecticide-based vector reduction strategies. Now, many of these diseases have reemerged in the tropics, recolonizing their previous range, and expanding into new territories previously not considered to be endemic. Habitat change, irrigation practices, atmospheric and climate change, insecticide and drug resistance as well as increases in global tourism, human traffic and commercial activities, have driven the reemergence and spread of vector borne diseases. While these diseases can be controlled through interventions aimed at both their vertebrate and invertebrate hosts, no effective vaccines exist, and only limited therapeutic prospects are available for their control in mammalian hosts. Molecular technologies such as transgenesis, which is the subject of this book, stand to increase the toolbox and benefit disease management strategies.
Written by leading international experts in the field of plant metabolic engineering, this book discusses how the technology can be applied. Applications resulting from metabolic engineering are expected to play a very important role in the future of plant breeding: for example, in the fields of improved resistance or improved traits concerning health promoting constituents, as well as in the production of fine chemicals such as medicines, flavors and fragrances.
This book covers trends in modern biotechnology. All aspects of this interdisciplinary technology, where knowledge, methods and expertise are required from chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science, are treated. More information as well as the electronic version is available at springer.com.
Molecular Methods of Plant Analysis Concept of the Series The powerful recombinant DNA technology and related developments have had an enormous impact on molecular biology. Any treatment of plant analy sis must make use of these new methods. Developments have been so fast and the methods so powerful that the editors of Modern Methods of Plant Analy sis have now decided to rename the series Molecular Methods of Plant Analy sis. This will not change the general aims of the series, but best describes the thrust and content of the series as we go forward into the new millennium. This does not me an that all chapters apriori deal only with the methods of molecular biology, but rather that these methods are to be found in many chapters together with the more traditional methods of analysis which have seen re cent advances. The numbering of the volumes of the series therefore continues on from 20, which is the most recently published volume under the title Modern Methods of Plant Analysis."
Louis-Marie Houdebine and Jianglin Fan The study of biological functions of proteins and their possible roles in the pathogenesis of human diseases requires more and more relevant animal m- els. Although mice including genetically modified mice offer many possibilities, other non-murine species are absolutely required in some circumstances. Rabbit is one of these species, which has been widely used in biomedical studies. This animal is genetically and physiologically closer to humans including cardiov- cular system and metabolism characteristics. Rabbit is thus more appropriate than mice to study some diseases such as atherosclerosis and lipid metabolism. Because of its larger size, surgery manipulation, bleeding, and turn-over studies are much easier performed in rabbits than in mice. Furthermore, transgenic rabbits can be produced using microinjection and other methods such as lentiviral v- tors. Cloning in rabbits has been proved possible, even though still laborious and time-consuming. Hopefully, functional rabbit ES cell lines will be available in the coming years. Gene deletion or knock-out in rabbits will then become possible.
During the past decade, there has been tremendous progress in maize biotechnology. This volume provides an overview of our current knowledge of maize molecular genetics, how it is being used to improve the crop, and future possibilities for crop enhancement. Several chapters deal with genetically engineered traits that are currently, or soon will be, in commercial production. Technical approaches for introducing novel genes into the maize genome, the regeneration of plants from transformed cells, and the creation of transgenic lines for field production are covered. Further, the authors describe how molecular genetic techniques are being used to identify genes and characterize their function, and how these procedures are utilized to develop elite maize germplasm. Moreover, molecular biology and physiological studies of corn as a basis for the improvement of its nutritional and food-making properties are included. Finally, the growing use of corn as biomass for energy production is discussed.
Genetic Engineering: Principles and Methods, published by Springer since 1979, presents state-of-the-art discussions in modern genetics and genetic engineering. This focus affirms a commitment to publish important reviews of the broadest interest to geneticists and their colleagues in affiliated disciplines. Recent volumes have covered gene therapy research, genetic mapping, plant science and technology, transport protein biochemistry, and viral vectors in gene therapy, among other topics.
It is now well established that all living systems emit a weak but permanent photon flux in the visible and ultraviolet range. This biophoton emission is correlated with many, if not all, biological and physiological functions. There are indications of a hitherto-overlooked information channel within the living system. Biophotons may trigger chemical reactivity in cells, growth control, differentiation and intercellular communication, i.e. biological rhythms. Biophotonics is becoming one of the most fashionable fields in modern science and biotechnology. Biophotonics and Coherent Systems in Biology an account of the original papers presented by the participants of the 3rd Alexander Gurwitsch Conference on the Biophotonics and Coherent Systems in Biology, Biophysics and Biotechnology which took place in Tauric University (Crimea, Ukraine) September 27 October 1, 2004. "
In recent decades, livestock producers have moved away from open grazing for a number of reasons, none having to do with the health of consumers. Genetic Resources, Chromosome Engineering, and Crop Improvement: Forage Crops demonstrates how state-of-the-art technology can encourage the raising of livestock in open pastures where they can be fed grasses grown in nature rather than meals enriched with hormones and other by-products. The volume brings together the world's leading innovators in crop science who furnish information on the availability of germplasm resources that breeders can exploit for the improvement of major forage crop varieties including alfalfa, wheatgrass and wildrye grasses, Bahiagrass, birdsfoot trefoil, clover, Bermudagrass, and ryegrass. An introductory chapter outlines the cytogenetic architecture of forage crops, describes the principles and strategies of cytogenetic and breeding manipulations, and summarizes landmark research. Ensuing chapters provide a comprehensive account of each crop: its origin; wild relatives; exploitation of genetic resources in the primary, secondary, and tertiary, and, where feasible, quarternary gene pools through breeding and cytogenetic manipulation; and genetic enrichment using the tools of molecular genetics and biotechnology. . Certain to become the standard reference, this volume- Discusses taxonomy, genomic and chromosomal constitution, and the geographical distribution Stresses the role of germplasm exploration, maintenance, and assimilation for increasing yield Presents practical improvement methodologies including conventional, cytogenetic, mutation, molecular, cell and tissue cultures, and genetic transformation In addition to serving as fodder, forage crops provide ground cover, aid in abetting erosions, yield a number of pharmaceuti
Cereals make an important component of daily diet of a major section of human population, so that their survival mainly depends on the cereal grain production, which should match the burgeoning human population. Due to painstaking efforts of plant breeders and geneticists, at the global level, cereal production in the past witnessed a steady growth. However, the cereal production in the past has been achieved through the use of high yielding varieties, which have a heavy demand of inputs in the form of chemical fertilizers, herbicides and insecticides/pesticides, leading to environmental degradation. In view of this, while increasing cereal production, one also needs to keep in mind that agronomic practices used for realizing high productivity do not adversely affect the environment. Improvement in cereal production in the past was also achieved through the use of alien genetic variation available in the wild relatives of these cereals, so that conservation and sustainable use of genetic resources is another important area, which is currently receiving the attention of plant breeders. The work leading to increased cereal production in the past received strong support from basic research on understanding the cereal genomes, which need to be manipulated to yield more from low inputs without any adverse effects as above. Through these basic studies, it also became fairly apparent that the genomes of all cereals are related and were derived from the same lineage, million of years ago.
The rapid expansion of synthetic biology is due to the design and construction of synthetic gene networks that have opened many new avenues in fundamental and applied research. Synthetic Gene Networks: Methods and Protocols provides the necessary information to design and construct synthetic gene networks in different host backgrounds. Divided into four convenient sections, this volume focuses on design concepts to devise synthetic gene networks and how mathematical models can be applied to the predictable engineering of desired network features. The volume continues by highlighting the construction and validation of biologic tools, describing strategies to optimize and streamline the host cell for optimized network performance, and covering how optimally designed gene networks can be implemented in a large variety of host cells ranging from bacteria over yeast and insect cells to plant and mammalian cell culture. Written in the successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, Synthetic Gene Networks: Methods and Protocols serves as an invaluable resource for established biologists, engineers, and computer scientists or novices just entering into the rapidly growing field of synthetic biology
While the WTO agreements do not regulate the use of biotechnology per se, their rules can have a profound impact on the use of the technology for both commercial and non-commercial purposes. This book seeks to identify the challenges to international trade regulation that arise from biotechnology. The contributions examine whether existing international obligations of WTO Members are appropriate to deal with the issues arising for the use of biotechnology and whether there is a need for new international legal instruments, including a potential WTO Agreement on Biotechnology. They combine various perspectives on and topics relating to genetic engineering and trade, including human rights and gender; intellectual property rights; traditional knowledge and access and benefit sharing; food security, trade and agricultural production and food safety; and medical research, cloning and international trade.
An introductory tour into the stranger-than-fiction world of genetic engineering, a scientific realm inhabited by eager researchers intent upon fashioning a prodigious medley of genetically modified (GM) organisms to serve human needs.
Cancer and Noncoding RNAs offers an in-depth exploration of noncoding RNAs and their role in epigenetic regulation of complex human disease, most notably cancer. In addition to examining microRNAs, this volume provides a unique evaluation of more recently profiled noncoding RNAs now implicated in carcinogenesis, including lncRNAs, piRNAs, circRNAs, and tRNAs, identifying differences in function between these noncoding RNAs and how they interact with the rest of the epigenome. A broad range of chapters from experts in the field detail epigenetic regulation of various cancer types, along with recent next generation sequencing technologies, genome-wide association studies (GWAS) and bioinformatics approaches. This book will help researchers in genomic medicine and cancer biology better understand the role of noncoding RNAs in epigenetics, aiding in the development of useful biomarkers for diagnosis, prognosis and new RNA-based disease therapies. |
![]() ![]() You may like...
Synthetic Biology - New…
Madan L. Nagpal, Oana-Maria Boldura, …
Hardcover
R3,410
Discovery Miles 34 100
Cosmic Genetic Evolution, Volume 106
Edward Steele, Chandra Wickramasinghe
Hardcover
R4,029
Discovery Miles 40 290
Therapeutic Antibody Engineering…
William R. Strohl, Lila M. Strohl
Hardcover
Nanotechnology in Modern Animal…
Pawan Kumar Maurya, Sanjay Singh
Paperback
R1,676
Discovery Miles 16 760
Genetically Modified Organisms in Food…
Ronald Ross Watson, Victor R. Preedy
Hardcover
R2,998
Discovery Miles 29 980
|