![]() |
![]() |
Your cart is empty |
||
Books > Earth & environment > Geography > Cartography, geodesy & geographic information systems (GIS) > Geographical information systems (GIS)
Optical remote sensing is of invaluable help in understanding the marine environment and its biogeochemical and physical processes. The Coastal Zone Color Scanner (CZCS), which operated on board the Nimbus-7 satellite from late 1978 to early 1986, has been the main source of ocean colour data. Much work has been devoted to CZCS data processing and analysis techniques throughout the 1980s. After a decade of experience, the Productivity of the Global Ocean (PGO) Activity - which was established in the framework of the International Space Year 1992 (ISY '92) by SAFISY, the Space Agency Forum of ISY - sponsored a workshop aimed at providing a reference in ocean colour science and at promoting the full exploitation of the CZCS historical data in the field of biological oceanography. The present volume comprises a series of state-of-the-art contributions on theory, applications and future perspectives of ocean colour. After an introduction on the historical perspective of ocean colour, a number of articles are devoted to the CZCS theoretical background, on radiative transfer and in-water topics, as well as on calibration, atmospheric correction and pigment concentration retrieval algorithms developed for the CZCS. Further, a review is given of major applications of CZCS data around the world, carried out in the past decade. The following part of the book is centered on the application of ocean colour to the assessment of marine biological information, with particular regard to plankton biomass, primary productivity and the coupling of physical/biological models. The links between global oceanic production and climate dynamics are also addressed. Finally, the last section is devoted to future approaches and goals of ocean colour science, and to planned sensors and systems. The book is required reading for those involved in ocean colour and related disciplines, providing an overview of the current status in this field as well as stimulating the debate on new ideas and developments for upcoming ocean colour missions.
Geotechnologies and the Environment: Environmental Applications and Mana- ment presents an engaging and diverse array of physically-oriented GIScience applications that have been organized using four broad themes. While the book's themes are by no means mutually exclusive, Hoalst-Pullen and Patterson provide an elegant overview of the eld that frames the collection's subsequent thematic str- ture - Wilderness and Wildlife Response; Glaciers; Wetlands and Watersheds; and Human Health and the Environment. Over the course of the volume, the contrib- ing authors move beyond basic (and in some respects cliched) landscape ecology of land use change to explore human-environment dynamics heretofore not emp- sized in the applied literature. In doing so, the collection presents a compelling case for the importance of developing new physically-oriented GIScience applications that reside at the nexus of social and natural systems with the explicit intent of informing public policy and/or the decision making practices of resource managers. Individually, the chapters themselves are intentionally diverse. The diversity of the approaches, their spatial context, and emphases on management applications demonstrate the many ways in which geotechnologies can be used to address small and big problems in both developed and developing regions. The collection's int- nal coherence is derived - like the book series - from its explicit appeal to a wide variety of human-environment interactions with potential policy linkages.
Water is vital to life, maintenance of ecological balance, economic development, and sustenance of civilization. Planning and management of water resources and its optimal use are a matter of urgency for most countries of the world, and even more so for India with a huge population. Growing population and expanding economic activities exert increasing demands on water for varied needs--domestic, industrial, agricultural, power generation, navigation, recreation, etc. In India, agriculture is the highest user of water. The past three decades have witnessed numerous advances as well as have presented intriguing challenges and exciting opportunities in hydrology and water resources. Compounding them has been the growing environmental consciousness. Nowhere are these challenges more apparent than in India. As we approach the twenty first century, it is entirely fitting to take stock of what has been accomplished and what remains to be accomplished, and what accomplishments are relevant, with particular reference to Indian conditions."
The Ninth International Conference on Basement Tectonics was held at the Australian National University in Canberra 2-6 July 1990. The opening keynote address was given by Prof. R.W.R. Rutland, Director of the Bureau of Mineral Resources. Other keynote speakers were E.S.T. O'Driscoll, an Australian consultant, and Prof P. Bankwitz, Central Institute for Physics of the Earth, Potsdam, GDR. Technical sessions were arranged by session conveners on the following five topic- i) The structure of the Australian craton and cover basins; ii) Basement structure of continental regions; iii) Structural patterns and mineral deposits; iv) Techniques for analysing basement structures; v) Structural patterns in oceanic crust. The arrangement of papers for this Proceedings Volume has been simplified. Part 1 deals with Australia, Part 2 with other areas and Part 3 lists the titles of all the papers read at the conference. Abstracts of these papers are available in Geological Society of Australia Abstracts No 26 and may be purchased for $AI0 from the Geological Society of Australia Office, ANA House, 301 George Street, Sydney NSW 2000. Field trips to view aspects of the Lachlan Fold Belt and the Sydney Basin were assisted by H.J. Harrington, D. Branagan, D. Wyborn, B. Drummond and M.J. Rick~d. A longer field trip, aborted through low enrolments, was organized by H.J. Harrington with assistance from W. Preiss, N. Cook, R. Glenn, A. Grady, and P. James; this assistance is gratefully acknowledged.
Linking People, Place, and Policy: A GIScience Approach describes a breadth of research associated with the study of human-environment interactions, with particular emphasis on land use and land cover dynamics. This book examines the social, biophysical, and geographical drivers of land use and land cover patterns and their dynamics, which are interpreted within a policy-relevant context. Concepts, tools, and techniques within Geographic Information Science serve as the unifying methodological framework in which landscapes in Thailand, Ecuador, Kenya, Cambodia, China, Brazil, Nepal, and the United States are examined through analyses conducted using quantitative, qualitative, and image-based techniques. Linking People, Place, and Policy: A GIScience Approach addresses a need for a comprehensive and rigorous treatment of GIScience for research and study within the context of human-environment interactions. The human dimensions research community, land use and land cover change programs, and human and landscape ecology communities, among others, are collectively viewing the landscape within a spatially-explicit perspective, where people are viewed as agents of landscape change that shape and are shaped by the landscape, and where landscape form and function are assessed within a space-time context. This book articulates some of these challenges and opportunities.
The Arctic sea ice is characterized by profound changes caused by surface melting processes and the formation of melt ponds in summer. Melt ponds contribute to the ice-albedo feedback as they reduce the surface albedo of sea ice, and hence accelerate the decay of Arctic sea ice. To quantify the melting of the entire Arctic sea ice, satellite based observations are necessary. Due to different spectral properties of snow, ice, and water, theoretically, multi-spectral optical sensors are necessary for the analysis of these distinct surface types. This study demonstrates the potential of optical sensors to detect melt ponds on Arctic sea ice. For the first time, an Arctic-wide, multi-annual melt pond data set for the years 2000-2011 has been created and analyzed.
Spatial information is pervaded by uncertainty. Indeed, geographical data is often obtained by an imperfect interpretation of remote sensing images, while people attach ill-defined or ambiguous labels to places and their properties. As another example, medical images are often the result of measurements by imprecise sensors (e.g. MRI scans). Moreover, by processing spatial information in real-world applications, additional uncertainty is introduced, e.g. due to the use of interpolation/extrapolation techniques or to conflicts that are detected in an information fusion step. To the best of our knowledge, this book presents the first overview of spatial uncertainty which goes beyond the setting of geographical information systems. Uncertainty issues are especially addressed from a representation and reasoning point of view. In particular, the book consists of 14 chapters, which are clustered around three central topics. The first of these topics is about the uncertainty in meaning of linguistic descriptions of spatial scenes. Second, the issue of reasoning about spatial relations and dealing with inconsistency in information merging is studied. Finally, interpolation and prediction of spatial phenomena are investigated, both at the methodological level and from an application-oriented perspective. The concept of uncertainty by itself is understood in a broad sense, including both quantitative and more qualitative approaches, dealing with variability, epistemic uncertainty, as well as with vagueness of terms.
The Earth s magnetic and gravity field play an important role in global and regional geodynamics. Satellite exploration of these fields has received great attention in recent years. Research satellites such as CHAMP and GRACE as well as the ESA explorer GOCE apply new measurement techniques, thus allowing the recovery of the gravitational and magnetic field with unprecedented accuracy and resolution, spatial as well as temporal. Combined with terrestrial observations and computer models, this data will help develop a more detailed understanding of the Earth as a system. In Germany, many of the processing, modelling and interpreting methodologies for these new observation techniques are developed under the umbrella of the R&D-programme GEOTECHNOLOGIEN, funded by the Federal Ministry of Education and Research (BMBF). The research projects focus on a better understanding of the spatial and temporal variations in the magnetic and gravity field and their relationship to the dynamics of the Earth s interior and global change processes. This volume presents the results of the multidisciplinary studies covered by the programme for the period 2005-2008. It includes the following topics: High-accuracy gravity field models, near-real-time provision and usage of CHAMP and GRACE atmospheric sounding, sea level variations, improved GRACE gravity time series and their validation by ocean bottom pressure measurements, integration of space geodetic techniques as a basis for the Global Geodetic-Geophysical Observing System (GGOS), high-resolution magnetic field models and global magnetisation maps and time-variable gravity and surface mass processes."
This book contains twenty-eight papers by participants in the NATO Advanced Study Institute (ASI) on "Cognitive and Linguistic Aspects of Geographic Space," held in Las Navas del Maxques, Spain, July 8-20, 1990. The NATO ASI marked a stage in a two-year research project at the U. S. National Center for Geographic Infonnation and Analysis (NCOIA). In 1987, the U. S. National Science Foundation issued a solicitation for proposals to establish the NCGIA-and one element of that solicitation was a call for research on a "fundamental theory of spatial relations." We felt that such a fundamental theory could be searched for in mathematics (geometry, topology) or in cognitive science, but that a simultaneous search in these two seemingly disparate research areas might produce novel results. Thus, as part of the NCGIA proposal from a consortium consisting of the University of California at Santa Barbara, the State University of New York at Buffalo, and the University of Maine, we proposed that the second major Research Initiative (two year, multidisciplinary research project) of the NCOIA would address these issues, and would be called "Languages of Spatial Relations" The grant to establish the NCOIA was awarded to our consortium late in 1988.
Over the past 20 years the costs of natural disasters have escalated significantly. The lives of over 800 million people have been disrupted and the number of catastrophes has nearly quadrupled. At present, the increasing global threat of natural disasters, in spite of our increased knowledge, is ominous. With the growth in world population, the increasing of resources in newly developing areas, and the increasing cost and sophistication of engineering structures and technical installations, there is an urgent need to seek to understand the potential threats posed by natural hazards and to ascertain the best ways of mitigating their damaging effects. To meet this urgent threat, the United Nations (UN) General Assembly in December 22, 1989 passed a Resolution which declared the 1990s to be the International Decade for Natural Disaster Reduction (IDNDR). As a contribution to the decade, the International Symposium Hazards--91 was held in Perugia, Italy, during 4--9 August 1991. The conference was attended by specialists from 34 countries, and a total of 110 papers were presented at 20 sessions, covering a very broad range of topics which proved to be of significant value for future research. The sixteen articles included in this book provide a unique overview of the state-of-the-science in geophysical hazards including climatic, atmospheric, hydrological and geological hazards. Furthermore, the results of a panel on the IDNDR and the recommendations adopted during the meeting are presented at the end of this volume. Recent Studies in Geophysical Hazards is thus an excellent reference source for scientists, engineers, and policy makers.
Acoustic Signal Processing for Ocean Explortion has two major goals: (i) to present signal processing algorithms that take into account the models of acoustic propagation in the ocean and; (ii) to give a perspective of the broad set of techniques, problems, and applications arising in ocean exploration. The book discusses related issues and problems focused in model based acoustic signal processing methods. Besides addressing the problem of the propagation of acoustics in the ocean, it presents relevant acoustic signal processing methods like matched field processing, array processing, and localization and detection techniques. These more traditional contexts are herein enlarged to include imaging and mapping, and new signal representation models like time/frequency and wavelet transforms. Several applied aspects of these topics, such as the application of acoustics to fisheries, sea floor swath mapping by swath bathymetry and side scan sonar, autonomous underwater vehicles and communications in underwater are also considered.
Water is vital to life, maintenance of ecological balance, economic development, and sustenance of civilization. Planning and management of water resources and its optimal use are a matter of urgency for most countries of the world, and even more so for India with a huge population. Growing population and expanding economic activities exert increasing demands on water for varied needs--domestic, industrial, agricultural, power generation, navigation, recreation, etc. In India, agriculture is the highest user of water. The past three decades have witnessed numerous advances as well as have presented intriguing challenges and exciting opportunities in hydrology and water resources. Compounding them has been the growing environmental consciousness. Nowhere are these challenges more apparent than in India. As we approach the twenty first century, it is entirely fitting to take stock of what has been accomplished and what remains to be accomplished, and what accomplishments are relevant, with particular reference to Indian conditions."
The diversity of life is displayed by a diversity the biodiversity elements. These unique of structural and functional elements. Many approaches are usually tailored to the region of aspects of this diversity are critical for main the world where the scientists' work is focused. taining the healthy functioning of biological This book presents accounts of many tech systems both within short and long time scales. niques that are currently being used in different Some highly diverse features of nature arise parts of the globe by conservation scientists. simply from the heterogeneous patterns that Many different techniques are necessary to comprise the web of nature. Many of these handle the differences in data types and data features contribute to the beauty and quality of coverages that occur across the globe. Also, a life. Humans do not yet understand enough variety of mapping approaches are needed about the complexity of nature to distinguish today to strengthen the many diverse critical those elements that act to support natural conservation objectives. These objectives include vitality from those elements that contribute the identification of the distribution patterns exclusively to our experience of beauty and for a species or habitat type and the placement quality in life. of protected area boundaries.
A significant part of understanding how people use geographic information and technology concerns human cognition. This book provides the first comprehensive in-depth examination of the cognitive aspects of human-computer interaction for geographic information systems (GIS). Cognitive aspects are treated in relation to individual, group, behavioral, institutional, and cultural perspectives. Extensions of GIS in the form of spatial decision support systems and SDSS for groups are part of the geographic information technology considered. Audience: Geographic information users, systems analysts and system designers, researchers in human-computer interaction will find this book an information resource for understanding cognitive aspects of geographic information technology use, and the methods appropriate for examining this use.
At the end of the 1970s, when signs of destabilization of forests became visible in Eu rope on a large scale, it soon became obvious that the syndrome called "forest de cline" was caused by a network of interrelated factors of abiotic and biotic origin. All attempts to explain the wide-spread syndrome by a single cause, and there were many of them, failed or can only be regarded as a single mosaic stone in the network of caus es behind the phenomenon. Forest ecosystems are highly complex natural or quasi natural systems, which exhibit different structures and functions and as a conse quence different resilience to internal or external stresses. Moreover, forest ecosys tems have a long history, which means that former impacts may act as predisposing factors for other stresses. The complexity and the different history of forest ecosys tems are two reasons that make it difficult to assess the actual state and future devel opment of forests. But there are two other reasons: one is the large time scale in which forests react, the other is the idiosyncrasy of the reactions on different sites. Due to the slow reaction and the regional complexity of the abiotic environment of forest ecosys tems, a profound analysis of each site and region is necessary to identify the underly ing causes and driving forces when attempting to overcome the destruction of forest ecosystems.
Through the results of a developed case study of information system for low temperature geothermal energy, GIS to Support Cost-effective Decisions on Renewable Sources addresses the issue of the use of Geographic Information Systems (GIS) in evaluating cost-effectiveness of renewable resource exploitation on a regional scale. Focusing on the design of a Decision Support System, a process is presented aimed to transform geographic data into knowledge useful for analysis and decision-making on the economic exploitation of geothermal energy. This detailed description includes a literature review and technical issues related to data collection, data mining, decision analysis for the informative system developed for the case study. A multi-disciplinary approach to GIS design is presented which is also an innovative example of fusion of georeferenced data acquired from multiple sources including remote sensing, networks of sensors and socio-economic censuses. GIS to Support Cost-effective Decisions on Renewable Sources is a useful, practical reference for engineers, managers and researchers involved in the design of GIS, decision support systems, investment planning/strategy in renewable energy and ICT innovation in this field.
This book is the provisional result of more than 10 years of continued discussion with friends and colleagues from neighbouring disciplines. Although only a small minority ofthe millions of GIS users on this planet are geographers, it seems that somehow, geographers are a kind ofnatural contact persons for historians, archae- ologists, economists, social scientists or others who are looking for appropriate ways ofworking with spatial data. We received constant encouragements and many valuable suggestions from our colleagues. Particularly we wish to thank the members ofthe GIS Study Group of the German Association of Geography (AK GIS) as well as the participants of a workshop in June 2000 on "Mapping Europe's historic boundaries and borders" which was generously sponsored by the European Science Foundation. Among the individuals we owe special appreciation are Humphrey Southall and Ian Gregory (The Great Britain Historical GIS Programme, University ofPortsmouth), Michael Goerke (European University Institute, Florence), Konrad Pierau (Center for His- torical Social Research, University of Cologne), Bernhard Holfter (Forderverein Historische Grundkarte, Leipzig) and Stephan Riediger (Department of History, University of Mannheim).
Geographic Information Systems (GIS) have been experiencing a steady and unprecedented growth in terms of general interest, theory development, and new applications in the last decade or so. GIS is an inter-disciplinary field that brings together many diverse areas such as computer science, geography, cartography, engineering, and urban planning. Database Issues in Geographic Information Systems approaches several important topics in GIS from a database perspective. Database management has a central role to play in most computer-based information systems, and is expected to have an equally important role to play in managing information in GIS as well. Existing database technology, however, focuses on the alphanumeric data that are required in business applications. GIS, like many other application areas, requires the ability to handle spatial as well as alphanumeric data. This requires new innovations in data management, which is the central theme of this monograph. The monograph begins with an overview of different application areas and their data and functional requirements. Next it addresses the following topics in the context of GIS: representation and manipulation of spatial data, data modeling, indexing, and query processing. Future research directions are outlined in each of the above topics. The last chapter discusses issues that are emerging as important areas of technological innovations in GIS. Database Issues in Geographic Information Systems is suitable as a secondary text for a graduate level course on Geographic Information Systems, Database Systems or Cartography, and as a reference for researchers and practitioners in industry.
Recent years have seen an explosive growth in the use of new database applications such as CAD/CAM systems, spatial information systems, and multimedia information systems. The needs of these applications are far more complex than traditional business applications. They call for support of objects with complex data types, such as images and spatial objects, and for support of objects with wildly varying numbers of index terms, such as documents. Traditional indexing techniques such as the B-tree and its variants do not efficiently support these applications, and so new indexing mechanisms have been developed. As a result of the demand for database support for new applications, there has been a proliferation of new indexing techniques. The need for a book addressing indexing problems in advanced applications is evident. For practitioners and database and application developers, this book explains best practice, guiding the selection of appropriate indexes for each application. For researchers, this book provides a foundation for the development of new and more robust indexes. For newcomers, this book is an overview of the wide range of advanced indexing techniques. Indexing Techniques for Advanced Database Systems is suitable as a secondary text for a graduate level course on indexing techniques, and as a reference for researchers and practitioners in industry.
Rapid development of remote sensing technology in recent years has greatly increased availability of high-resolution satellite image data. However, detailed analysis of such large data sets also requires innovative new techniques in image and signal processing. This important text/reference presents a comprehensive review of image processing methods, for the analysis of land use in residential areas. Combining a theoretical framework with highly practical applications, making use of both well-known methods and cutting-edge techniques in computer vision, the book describes a system for the effective detection of single houses and streets in very high resolution. Topics and features: with a Foreword by Prof. Dr. Peter Reinartz of the German Aerospace Center; provides end-of-chapter summaries and review questions; presents a detailed review on remote sensing satellites; examines the multispectral information that can be obtained from satellite images, with a focus on vegetation and shadow-water indices; investigates methods for land-use classification, introducing precise graph theoretical measures over panchromatic images; addresses the problem of detecting residential regions; describes a house and street network-detection subsystem; concludes with a summary of the key ideas covered in the book. This pioneering work on automated satellite and aerial image-understanding systems will be of great interest to researchers in both remote sensing and computer vision, highlighting the benefit of interdisciplinary collaboration between the two communities. Urban planners and policy makers will also find considerable value in the proposed system."
A Coming of Age: Geospatial Analysis and Modelling in the Early Twenty First Century Forty years ago when spatial analysis first emerged as a distinct theme within geography's quantitative revolution, the focus was largely on consistent methods for measuring spatial correlation. The concept of spatial au- correlation took pride of place, mirroring concerns in time-series analysis about similar kinds of dependence known to distort the standard probability theory used to derive appropriate statistics. Early applications of spatial correlation tended to reflect geographical patterns expressed as points. The perspective taken on such analytical thinking was founded on induction, the search for pattern in data with a view to suggesting appropriate hypotheses which could subsequently be tested. In parallel but using very different techniques came the development of a more deductive style of analysis based on modelling and thence simulation. Here the focus was on translating prior theory into forms for generating testable predictions whose outcomes could be compared with observations about some system or phenomenon of interest. In the intervening years, spatial analysis has broadened to embrace both inductive and deductive approaches, often combining both in different mixes for the variety of problems to which it is now applied.
A survey of the feasibility of aircraft- and satellite-based methods for revealing environmental-geological problems. Throughout, a balanced ratio between explanations on the methodological/technical side and presentations of case studies is maintained. The comparison of case studies from North America and Germany shows how the respective territorial conditions lead to distinct methodological approaches. Equally, the considerable dissimilarities in population density and in distances between waste disposal areas, settlements, and areas of protected groundwater necessitate a "diversified methods" approach.
"Remote Sensing of Urban and Suburban Areas" provides instructors with a text reference that has a logical and easy-to-follow flow of topics around which they can structure the syllabi of their urban remote sensing courses. Topics have been chosen to bridge the gap between remote sensing and urban studies through a better understanding of the science that underlies both fields. In so doing, the book includes 17 chapters written by leading international experts in respected fields to provide a balanced coverage of fundamental issues in both remote sensing and urban studies. Emphasis is placed on: theoretical and practical issues in contemporary urban studies and remote sensing; the spectral, spatial and temporal requirements of remotely sensed data in relation to various urban phenomena; methods and techniques for analyzing and integrating remotely sensed data and image processing with geographic information systems to address urban problems; and examples of applications in which applying remote sensing to tackle urban problems is deemed useful and important.
The ability to extract generic 3D objects from images is a crucial step towards automation of a variety of problems in cartographic database compilation, industrial inspection and assembly, and autonomous navigation. Many of these problem domains do not have strong constraints on object shape or scene content, presenting serious obstacles for the development of robust object detection and delineation techniques. Geometric Constraints for Object Detection and Delineation addresses these problems with a suite of novel methods and techniques for detecting and delineating generic objects in images of complex scenes, and applies them to the specific task of building detection and delineation from monocular aerial imagery. PIVOT, the fully automated system implementing these techniques, is quantitatively evaluated on 83 images covering 18 test scenes, and compared to three existing systems for building extraction. The results highlight the performance improvements possible with rigorous photogrammetric camera modeling, primitive-based object representations, and geometric constraints derived from their combination. PIVOT's performance illustrates the implications of a clearly articulated set of philosophical principles, taking a significant step towards automatic detection and delineation of 3D objects in real-world environments. Geometric Constraints for Object Detection and Delineation is suitable as a textbook or as a secondary text for a graduate-level course, and as a reference for researchers and practitioners in industry.
Water is vital to life, maintenance of ecological balance, economic development, and sustenance of civilization. Planning and management of water resources and its optimal use are a matter of urgency for most countries of the world, and even more so for India with a huge population. Growing population and expanding economic activities exert increasing demands on water for varied needs--domestic, industrial, agricultural, power generation, navigation, recreation, etc. In India, agriculture is the highest user of water. The past three decades have witnessed numerous advances as well as have presented intriguing challenges and exciting opportunities in hydrology and water resources. Compounding them has been the growing environmental consciousness. Nowhere are these challenges more apparent than in India. As we approach the twenty first century, it is entirely fitting to take stock of what has been accomplished and what remains to be accomplished, and what accomplishments are relevant, with particular reference to Indian conditions." |
![]() ![]() You may like...
Density Functional Theory - An Advanced…
Eberhard Engel, Reiner M. Dreizler
Hardcover
R4,281
Discovery Miles 42 810
Advances in Acoustic Emission Technology…
Gongtian Shen, Zhanwen Wu, …
Hardcover
|