![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Infinite series
Statistics and quantitative methods are brought to life for social science students in this tutorial course. ,P> This revised edition provides an overview of entry- and intermediate-level statistics, and the material on the accompanying website provides extensive practice. Both the text and the website are structured to make learning self-directed, thus numerous worked examples, exercises, activities and tests are included. The emphasis, throughout, is on practice. Students are expected to engage with the material and experience multiple aspects of data and statistical analysis. Most of the tutorials include detailed examples of how to conduct analyses in Microsoft Excel, SPSS, or R.
This book differs from traditional numerical analysis texts in that it focuses on the motivation and ideas behind the algorithms presented rather than on detailed analyses of them. It presents a broad overview of methods and software for solving mathematical problems arising in computational modeling and data analysis, including proper problem formulation, selection of effective solution algorithms, and interpretation of results. In the 20 years since its original publication, the modern, fundamental perspective of this book has aged well, and it continues to be used in the classroom. This Classics edition has been updated to include pointers to Python software and the Chebfun package, expansions on barycentric formulation for Lagrange polynomial interpretation and stochastic methods, and the availability of about 100 interactive educational modules that dynamically illustrate the concepts and algorithms in the book. Scientific Computing: An Introductory Survey, Second Edition is intended as both a textbook and a reference for computationally oriented disciplines that need to solve mathematical problems.
In 1940 G. H. Hardy published A Mathematician's Apology, a meditation on mathematics by a leading pure mathematician. Eighty-two years later, An Applied Mathematician's Apology is a meditation and also a personal memoir by a philosophically inclined numerical analyst, one who has found great joy in his work but is puzzled by its relationship to the rest of mathematics.
This textbook is a comprehensive introduction to computational mathematics and scientific computing suitable for undergraduate and postgraduate courses. It presents both practical and theoretical aspects of the subject, as well as advantages and pitfalls of classical numerical methods alongside with computer code and experiments in Python. Each chapter closes with modern applications in physics, engineering, and computer science. No previous experience in Python is required Simplified computer code for fast-paced learning and transferable skills development Includes practical problems ideal for project assignments and distance learning Presents both intuitive and rigorous faces of modern scientific computing Provides an introduction to neural networks and machine learning
An Introduction to Numerical Methods: A MATLAB® Approach, Fifth Edition continues to offer readers an accessible and practical introduction to numerical analysis. It presents a wide range of useful and important algorithms for scientific and engineering applications, using MATLAB to illustrate each numerical method with full details of the computed results so that the main steps are easily visualized and interpreted. This edition also includes new chapters on Approximation of Continuous Functions and Dealing with Large Sets of Data. Features: Covers the most common numerical methods encountered in science and engineering Illustrates the methods using MATLAB Ideal as an undergraduate textbook for numerical analysis Presents numerous examples and exercises, with selected answers provided at the back of the book Accompanied by downloadable MATLAB code hosted at https/www.routledge.com/ 9781032406824
An Introduction to Numerical Methods: A MATLAB® Approach, Fifth Edition continues to offer readers an accessible and practical introduction to numerical analysis. It presents a wide range of useful and important algorithms for scientific and engineering applications, using MATLAB to illustrate each numerical method with full details of the computed results so that the main steps are easily visualized and interpreted. This edition also includes new chapters on Approximation of Continuous Functions and Dealing with Large Sets of Data. Features: Covers the most common numerical methods encountered in science and engineering Illustrates the methods using MATLAB Ideal as an undergraduate textbook for numerical analysis Presents numerous examples and exercises, with selected answers provided at the back of the book Accompanied by downloadable MATLAB code hosted at https/www.routledge.com/ 9781032406824
First book to offer a guide to the foundations of the XFEM and its implementation A revolution similar to that initiated by the FEM is taking place through the XFEM, which is already implemented in leading commercial packages (ABAQUS, ANSYS, etc.) that are taught at undergraduate and post-graduate levels and to industrial end-users. XFEM provides a detailed overview of the basics around the newly introduced extended finite element method for applications in solving moving boundary problems. XFEM is introduced naturally as an extension of FEM, through simple one dimensional examples which then allow the introduction of higher-dimensional problems. Throughout the book, each key concept is highlighted by the corresponding piece of MATLAB code which is provided via an accompanying web portal. Uniquely, this portal allows readers to obtain real-time feedback and help from an existing community of more than 130 researchers and industrialists. Demystifies the theory behind XFEM and makes it accessible to all with previous knowledge of the FEM Provides a simple introduction to XFEM but also provides a range of tools which the reader can build upon to take on a large breadth of more complex problems. Presents each key theoretical concept in parallel with its implementational aspects in the form of simple MATLAB routines provided along with the book via an interactive companion website and portal Provides a detailed account of applications of XFEM to fracture mechanics, including techniques absent from current literature
Covers flight mechanics, flight simulation, flight testing, flight control, and aeroservoelasticity. Features artificial neural network and fuzzy logic-based aspects in modeling and analysis of flight mechanics systems: aircraft parameter estimation, and reconfiguration of control. Focuses on a systems-based approach. Includes two new chapters, numerical simulation examples with a MATLAB® based approach, and end-of-chapter exercises. Includes a Solutions Manual and Figure Slides for adopting instructors.
Computational methods to approximate the solution of differential equations play a crucial role in science, engineering, mathematics, and technology. The key processes that govern the physical world—wave propagation, thermodynamics, fluid flow, solid deformation, electricity and magnetism, quantum mechanics, general relativity, and many more—are described by differential equations. We depend on numerical methods for the ability to simulate, explore, predict, and control systems involving these processes. The finite element exterior calculus, or FEEC, is a powerful new theoretical approach to the design and understanding of numerical methods to solve partial differential equations (PDEs). The methods derived with FEEC preserve crucial geometric and topological structures underlying the equations and are among the most successful examples of structure-preserving methods in numerical PDEs. This volume aims to help numerical analysts master the fundamentals of FEEC, including the geometrical and functional analysis preliminaries, quickly and in one place. It is also accessible to mathematicians and students of mathematics from areas other than numerical analysis who are interested in understanding how techniques from geometry and topology play a role in numerical PDEs.
This remarkable text by John R. Taylor has been a non-stop best-selling international hit since it was first published forty years ago. However, the two-plus decades since the second edition was released have seen two dramatic developments; the huge rise in popularity of Bayesian statistics, and the continued increase in the power and availability of computers and calculators. In response to the former, Taylor has added a full chapter dedicated to Bayesian thinking, introducing conditional probabilities and Bayes’ theorem. The several examples presented in the new third edition are intentionally very simple, designed to give readers a clear understanding of what Bayesian statistics is all about as their first step on a journey to become practicing Bayesians. In response to the second development, Taylor has added a number of chapter-ending problems that will encourage readers to learn how to solve problems using computers. While many of these can be solved using programs such as Matlab or Mathematica, almost all of them are stated to apply to commonly available spreadsheet programs like Microsoft Excel. These programs provide a convenient way to record and process data and to calculate quantities like standard deviations, correlation coefficients, and normal distributions; they also have the wonderful ability – if students construct their own spreadsheets and avoid the temptation to use built-in functions – to teach the meaning of these concepts.
Partial differential equations (PDEs) are the main tool to describe spatially and temporally extended systems in nature. PDEs usually come with parameters, and the study of the parameter dependence of their solutions is an important task. Letting one parameter vary typically yields a branch of solutions, and at special parameter values, new branches may bifurcate. Numerical Continuation and Bifurcation in Nonlinear PDEs: Presents hands-on approach to numerical continuation and bifurcation for nonlinear PDEs, in 1D, 2D and 3D. ,Provides a concise but sound review of analytical background and numerical methods. Explains the use of the free MATLAB package pde2path via a large variety of examples with ready to use code. Contains demo codes that can be easily adapted to the reader's given problem. This book will be of interest to applied mathematicians and scientists from physics, chemistry, biology, and economics interested in the numerical solution of nonlinear PDEs, particularly the parameter dependence of solutions. It is appropriate for the following courses: Advanced Numerical Analysis, Special Topics on Numerical Analysis, Topics on Data Science, Topics on Numerical Optimization, and Topics on Approximation Theory.
This book addresses the need for a fundamental understanding of the physical origin, the mathematical behavior and the numerical treatment of models which include microstructure. Leading scientists present their efforts involving mathematical analysis, numerical analysis, computational mechanics, material modelling and experiment. The mathematical analyses are based on methods from the calculus of variations, while in the numerical implementation global optimization algorithms play a central role. The modeling covers all length scales, from the atomic structure up to macroscopic samples. The development of the models ware guided by experiments on single and polycrystals and results will be checked against experimental data.
The subject of the book is the mathematical theory of the discontinuous Galerkin method (DGM), which is a relatively new technique for the numerical solution of partial differential equations. The book is concerned with the DGM developed for elliptic and parabolic equations and its applications to the numerical simulation of compressible flow. It deals with the theoretical as well as practical aspects of the DGM and treats the basic concepts and ideas of the DGM, as well as the latest significant findings and achievements in this area. The main benefit for readers and the book’s uniqueness lie in the fact that it is sufficiently detailed, extensive and mathematically precise, while at the same time providing a comprehensible guide through a wide spectrum of discontinuous Galerkin techniques and a survey of the latest efficient, accurate and robust discontinuous Galerkin schemes for the solution of compressible flow.
This book gives an overview of affine diffusions, from Ornstein-Uhlenbeck processes to Wishart processes and it considers some related diffusions such as Wright-Fisher processes. It focuses on different simulation schemes for these processes, especially second-order schemes for the weak error. It also presents some models, mostly in the field of finance, where these methods are relevant and provides some numerical experiments. The book explains the mathematical background to understand affine diffusions and analyze the accuracy of the schemes. Â
The topics covered in this book, written by researchers at the forefront of their field, represent some of the most relevant research areas in modern coding theory: codes and combinatorial structures, algebraic geometric codes, group codes, quantum codes, convolutional codes, network coding and cryptography. The book includes a survey paper on the interconnections of coding theory with constrained systems, written by an invited speaker, as well as 37 cutting-edge research communications presented at the 4th International Castle Meeting on Coding Theory and Applications (4ICMCTA), held at the Castle of Palmela in September 2014. The event’s scientific program consisted of four invited talks and 39 regular talks by authors from 24 different countries. This conference provided an ideal opportunity for communicating new results, exchanging ideas, strengthening international cooperation, and introducing young researchers into the coding theory community.
The papers in this volume aim at obtaining a common understanding of the challenging research questions in web applications comprising web information systems, web services, and web interoperability; obtaining a common understanding of verification needs in web applications; achieving a common understanding of the available rigorous approaches to system development, and the cases in which they have succeeded; identifying how rigorous software engineering methods can be exploited to develop suitable web applications; and at developing a European-scale research agenda combining theory, methods and tools that would lead to suitable web applications with the potential to implement systems for computation in the public domain.
This book presents interesting, important unsolved problems in the mathematical and computational sciences. The contributing authors are leading researchers in their fields and they explain outstanding challenges in their domains, first by offering basic definitions, explaining the context, and summarizing related algorithms, theorems, and proofs, and then by suggesting creative solutions. Â The authors feel a strong motivation to excite deep research and discussion in the mathematical and computational sciences community, and the book will be of value to postgraduate students and researchers in the areas of theoretical computer science, discrete mathematics, engineering, and cryptology.
This book emphasizes in detail the applicability of the Optimal Homotopy Asymptotic Method to various engineering problems. It is a continuation of the book “Nonlinear Dynamical Systems in Engineering: Some Approximate Approaches”, published at Springer in 2011 and it contains a great amount of practical models from various fields of engineering such as classical and fluid mechanics, thermodynamics, nonlinear oscillations, electrical machines and so on. The main structure of the book consists of 5 chapters. The first chapter is introductory while the second chapter is devoted to a short history of the development of homotopy methods, including the basic ideas of the Optimal Homotopy Asymptotic Method. The last three chapters, from Chapter 3 to Chapter 5, are introducing three distinct alternatives of the Optimal Homotopy Asymptotic Method with illustrative applications to nonlinear dynamical systems. The third chapter deals with the first alternative of our approach with two iterations. Five applications are presented from fluid mechanics and nonlinear oscillations. The Chapter 4 presents the Optimal Homotopy Asymptotic Method with a single iteration and solving the linear equation on the first approximation. Here are treated 32 models from different fields of engineering such as fluid mechanics, thermodynamics, nonlinear damped and undamped oscillations, electrical machines and even from physics and biology. The last chapter is devoted to the Optimal Homotopy Asymptotic Method with a single iteration but without solving the equation in the first approximation.
The first volume of the proceedings of the 7th conference on "Finite Volumes for Complex Applications" (Berlin, June 2014) covers topics that include convergence and stability analysis, as well as investigations of these methods from the point of view of compatibility with physical principles. It collects together the focused invited papers, as well as the reviewed contributions from internationally leading researchers in the field of analysis of finite volume and related methods. Altogether, a rather comprehensive overview is given of the state of the art in the field. Â The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation. Recent decades have brought significant success in the theoretical understanding of the method. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications. Researchers, PhD and masters level students in numerical analysis, scientific computing and related fields such as partial differential equations will find this volume useful, as will engineers working in numerical modeling and simulations.
This book covers original research and the latest advances in symbolic, algebraic and geometric computation; computational methods for differential and difference equations, symbolic-numerical computation; mathematics software design and implementation; and scientific and engineering applications based on features, invited talks, special sessions and contributed papers presented at the 9th (in Fukuoka, Japan in 2009) and 10th (in Beijing China in 2012) Asian Symposium on Computer Mathematics (ASCM). Thirty selected and refereed articles in the book present the conference participants’ ideas and views on researching mathematics using computers.
This book presents the latest results related to shells characterize and design shells, plates, membranes and other thin-walled structures, a multidisciplinary approach from macro- to nanoscale is required which involves the classical disciplines of mechanical/civil/materials engineering (design, analysis, and properties) and physics/biology/medicine among others. The book contains contributions of a meeting of specialists (mechanical engineers, mathematicians, physicists and others) in such areas as classical and non-classical shell theories. New trends with respect to applications in mechanical, civil and aero-space engineering, as well as in new branches like medicine and biology are presented which demand improvements of the theoretical foundations of these theories and a deeper understanding of the material behavior used in such structures.
This thesis is devoted to the study of the Bohman-Frieze-Wormald percolation model, which exhibits a discontinuous transition at the critical threshold, while the phase transitions in random networks are originally considered to be robust continuous phase transitions. The underlying mechanism that leads to the discontinuous transition in this model is carefully analyzed and many interesting critical behaviors, including multiple giant components, multiple phase transitions, and unstable giant components are revealed. These findings should also be valuable with regard to applications in other disciplines such as physics, chemistry and biology.
This volume presents significant advances in a number of theories and problems of Mathematical Analysis and its applications in disciplines such as Analytic Inequalities, Operator Theory, Functional Analysis, Approximation Theory, Functional Equations, Differential Equations, Wavelets, Discrete Mathematics and Mechanics. The contributions focus on recent developments and are written by eminent scientists from the international mathematical community. Special emphasis is given to new results that have been obtained in the above mentioned disciplines in which Nonlinear Analysis plays a central role. Some review papers published in this volume will be particularly useful for a broader readership in Mathematical Analysis, as well as for graduate students. An attempt is given to present all subjects in this volume in a unified and self-contained manner, to be particularly useful to the mathematical community.
The work developed in this thesis addresses very important and relevant issues of accretion processes around black holes. Beginning by studying the time variation of the evolution of inviscid accretion discs around black holes and their properties, the author investigates the change of the pattern of the flows when the strength of the shear viscosity is varied and cooling is introduced. He succeeds to verify theoretical predictions of the so called Two Component Advective Flow (TCAF) solution of the accretion problem onto black holes through numerical simulations under different input parameters. TCAF solutions are found to be stable. And thus explanations of spectral and timing properties (including Quasi-Period Oscillations, QPOs) of galactic and extra-galactic black holes based on shocked TCAF models appear to have a firm foundation.
The book contains a selection of contributions given at the 23th Congress on Differential Equations and Applications (CEDYA) / 13th Congress of Applied Mathematics (CMA) that took place at Castellon, Spain, in 2013. CEDYA is renowned as the congress of the Spanish Society of Applied Mathematics (SEMA) and constitutes the main forum and meeting point for applied mathematicians in Spain. The papers included in this book have been selected after a thorough refereeing process and provide a good summary of the recent activity developed by different groups working mainly in Spain on applications of mathematics to several fields of science and technology. The purpose is to provide a useful reference of academic and industrial researchers working in the area of numerical analysis and its applications. |
![]() ![]() You may like...
Differential Equations with…
Warren Wright, Dennis Zill
Paperback
![]()
Metaheuristics for Production Systems
El--Ghazali Talbi, Farouk Yalaoui, …
Hardcover
Development, Properties, and Industrial…
R Keshavamurthy, Vijay Tambrallimath, …
Hardcover
R7,243
Discovery Miles 72 430
|