![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Infinite series
This volume contains a selection of papers presented at the 21st international conference on domain decomposition methods in science and engineering held in Rennes, France, June 25-29, 2012. Domain decomposition is an active and interdisciplinary research discipline, focusing on the development, analysis and implementation of numerical methods for massively parallel computers. Domain decomposition methods are among the most efficient solvers for large scale applications in science and engineering. They are based on a solid theoretical foundation and shown to be scalable for many important applications. Domain decomposition techniques can also naturally take into account multiscale phenomena. This book contains the most recent results in this important field of research, both mathematically and algorithmically and allows the reader to get an overview of this exciting branch of numerical analysis and scientific computing.
This book promotes the experimental mathematics approach in the context of secondary mathematics curriculum by exploring mathematical models depending on parameters that were typically considered advanced in the pre-digital education era. This approach, by drawing on the power of computers to perform numerical computations and graphical constructions, stimulates formal learning of mathematics through making sense of a computational experiment. It allows one (in the spirit of Freudenthal) to bridge serious mathematical content and contemporary teaching practice. In other words, the notion of teaching experiment can be extended to include a true mathematical experiment. When used appropriately, the approach creates conditions for collateral learning (in the spirit of Dewey) to occur including the development of skills important for engineering applications of mathematics. In the context of a mathematics teacher education program, the book addresses a call for the preparation of teachers capable of utilizing modern technology tools for the modeling-based teaching of mathematics with a focus on methods conducive to the improvement of the whole STEM education at the secondary level. By the same token, using the book’s pedagogy and its mathematical content in a pre-college classroom can assist teachers in introducing students to the ideas that develop the foundation of engineering profession.
The book presents twelve state of the art contributions in the field of numerical modeling of materials subjected to large strain, high strain rates, large pressure and high stress triaxialities, organized into two sections. The first part is focused on high strain rate-high pressures such as those occurring in impact dynamics and shock compression related phenomena, dealing with material response identification, advanced modeling incorporating microstructure and damage, stress waves propagation in solids and structures response under impact. The latter part is focused on large strain-low strain rates applications such as those occurring in technological material processing, dealing with microstructure and texture evolution, material response at elevated temperatures, structural behavior under large strain and multi axial state of stress.
This book presents the complete formulation of a new advanced discretization meshless technique: the Natural Neighbour Radial Point Interpolation Method (NNRPIM). In addition, two of the most popular meshless methods, the EFGM and the RPIM, are fully presented. Being a truly meshless method, the major advantages of the NNRPIM over the FEM and other meshless methods, are the remeshing flexibility and the higher accuracy of the obtained variable field. Using the natural neighbour concept, the NNRPIM permits to determine organically the influence-domain, resembling the cellulae natural behaviour. This innovation permits the analysis of convex boundaries and extremely irregular meshes, which is an advantage in the biomechanical analysis, with no extra computational effort associated. This volume shows how to extend the NNRPIM to the bone tissue remodelling analysis, expecting to contribute with new numerical tools and strategies in order to permit a more efficient numerical biomechanical analysis.
This book collects papers presented during the European Workshop on High Order Nonlinear Numerical Methods for Evolutionary PDEs (HONOM 2013) that was held at INRIA Bordeaux Sud-Ouest, Talence, France in March, 2013. The central topic is high order methods for compressible fluid dynamics. In the workshop, and in this proceedings, greater emphasis is placed on the numerical than the theoretical aspects of this scientific field. The range of topics is broad, extending through algorithm design, accuracy, large scale computing, complex geometries, discontinuous Galerkin, finite element methods, Lagrangian hydrodynamics, finite difference methods and applications and uncertainty quantification. These techniques find practical applications in such fields as fluid mechanics, magnetohydrodynamics, nonlinear solid mechanics, and others for which genuinely nonlinear methods are needed.
A comprehensive introduction to the most commonly used statistical methods relevant in atmospheric, oceanic and climate sciences. Each method is described step-by-step using plain language, and illustrated with concrete examples, with relevant statistical and scientific concepts explained as needed. Particular attention is paid to nuances and pitfalls, with sufficient detail to enable the reader to write relevant code. Topics covered include hypothesis testing, time series analysis, linear regression, data assimilation, extreme value analysis, Principal Component Analysis, Canonical Correlation Analysis, Predictable Component Analysis, and Covariance Discriminant Analysis. The specific statistical challenges that arise in climate applications are also discussed, including model selection problems associated with Canonical Correlation Analysis, Predictable Component Analysis, and Covariance Discriminant Analysis. Requiring no previous background in statistics, this is a highly accessible textbook and reference for students and early-career researchers in the climate sciences.
Significantly revised and expanded, this second edition provides readers at all levels - from beginning students to practising analysts - with the basic concepts and standard tools necessary to solve problems of analysis, and how to apply these concepts to research in a variety of areas. The authors quickly move from basic topics, to methods that work successfully in mathematics and its applications. While omitting many usual typical textbook topics, this volume includes all necessary definitions, proofs, explanations, examples, and exercises to bring the reader to an advanced level of understanding with a minimum of fuss, and, at the same time, doing so in a rigorous and pedagogical way. Many topics that are useful and important, but usually left to advanced monographs, are presented, and these should give the beginner a sense that the subject is alive and growing.
Acta Numerica is an annual publication containing invited survey papers by leading researchers in numerical mathematics and scientific computing. The papers present overviews of recent developments in their area and provide state-of-the-art techniques and analysis.
Fast solvers for elliptic PDEs form a pillar of scientific computing. They enable detailed and accurate simulations of electromagnetic fields, fluid flows, biochemical processes, and much more. This textbook provides an introduction to fast solvers from the point of view of integral equation formulations, which lead to unparalleled accuracy and speed in many applications. The focus is on fast algorithms for handling dense matrices that arise in the discretization of integral operators, such as the fast multipole method and fast direct solvers. While the emphasis is on techniques for dense matrices, the text also describes how similar techniques give rise to linear complexity algorithms for computing the inverse or the LU factorization of a sparse matrix resulting from the direct discretization of an elliptic PDE. This is the first textbook to detail the active field of fast direct solvers, introducing readers to modern linear algebraic techniques for accelerating computations, such as randomized algorithms, interpolative decompositions, and data-sparse hierarchical matrix representations. Written with an emphasis on mathematical intuition rather than theoretical details, it is richly illustrated and provides pseudocode for all key techniques. Fast Direct Solvers for Elliptic PDEs is appropriate for graduate students in applied mathematics and scientific computing, engineers and scientists looking for an accessible introduction to integral equation methods and fast solvers, and researchers in computational mathematics who want to quickly catch up on recent advances in randomized algorithms and techniques for working with data-sparse matrices.
In scientific computing (also known as computational science), advanced computing capabilities are used to solve complex problems. This self-contained book describes and analyzes reported software failures related to the major topics within scientific computing: mathematical modeling of phenomena; numerical analysis (number representation, rounding, conditioning); mathematical aspects and complexity of algorithms, systems, or software; concurrent computing (parallelization, scheduling, synchronization); and numerical data (such as input of data and design of control logic). Readers will find lists of related, interesting bugs, MATLAB examples, and ""excursions"" that provide necessary background, as well as an in-depth analysis of various aspects of the selected bugs. Illustrative examples of numerical principles such as machine numbers, rounding errors, condition numbers, and complexity are also included. This book is intended for students, teachers, and researchers in scientific computing, computer science, and applied mathematics. It is also an entertaining and motivating introduction for those with a minimum background in mathematics or computer science. Bits and Bugs can be used for courses in numerical analysis, numerical methods in linear algebra/ODEs/PDEs, introductory software engineering, introductory scientific computing, and parallel programming.
This volume represents the proceedings of the Noncommutative Geometry Workshop that was held as part of the thematic program on operator algebras at the Fields Institute in May 2008. Pioneered by Alain Connes starting in the late 1970s, noncommutative geometry was originally inspired by global analysis, topology, operator algebras, and quantum physics. Its main applications were to settle some long-standing conjectures, such as the Novikov conjecture and the Baum-Connes conjecture. Next came the impact of spectral geometry and the way the spectrum of a geometric operator, like the Laplacian, holds information about the geometry and topology of a manifold, as in the celebrated Weyl law. This has now been vastly generalized through Connes' notion of spectral triples. Finally, recent years have witnessed the impact of number theory, algebraic geometry and the theory of motives, and quantum field theory on noncommutative geometry. Almost all of these aspects are touched upon with new results in the papers of this volume. This book is intended for graduate students and researchers in both mathematics and theoretical physics who are interested in noncommutative geometry and its applications.
Here is an introduction to numerical methods for partial differential equations with particular reference to those that are of importance in fluid dynamics. The author gives a thorough and rigorous treatment of the techniques, beginning with the classical methods and leading to a discussion of modern developments. For easier reading and use, many of the purely technical results and theorems are given separately from the main body of the text. The presentation is intended for graduate students in applied mathematics, engineering and physical sciences who have a basic knowledge of partial differential equations. |
![]() ![]() You may like...
Trends in Corrections - Interviews with…
Martha Henderson Hurley, Dilip K Das
Hardcover
R5,392
Discovery Miles 53 920
RFID Security - A Lightweight Paradigm
Ahmed Khattab, Zahra Jeddi, …
Hardcover
R3,494
Discovery Miles 34 940
Stream-Tube Method - A Complex-Fluid…
Jean-Robert Clermont, Amine Ammar
Hardcover
R5,276
Discovery Miles 52 760
Advances in Mathematical Economics…
Shigeo Kusuoka, Toru Maruyama
Hardcover
RFID and Wireless Sensors Using…
Angel Ramos, Antonio Lazaro, …
Hardcover
Promises in the Promised Land - Mobility…
Vered Kraus, Robert W. Hodge
Hardcover
R2,771
Discovery Miles 27 710
Radio Resource Management for Wireless…
Jens Zander, Seong-Lyun Kim, …
Hardcover
R3,780
Discovery Miles 37 800
Computational Intelligence Paradigms…
Mika Sato-Ilic, Maria Virvou, …
Hardcover
R3,038
Discovery Miles 30 380
|