![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Infinite series
The work developed in this thesis addresses very important and relevant issues of accretion processes around black holes. Beginning by studying the time variation of the evolution of inviscid accretion discs around black holes and their properties, the author investigates the change of the pattern of the flows when the strength of the shear viscosity is varied and cooling is introduced. He succeeds to verify theoretical predictions of the so called Two Component Advective Flow (TCAF) solution of the accretion problem onto black holes through numerical simulations under different input parameters. TCAF solutions are found to be stable. And thus explanations of spectral and timing properties (including Quasi-Period Oscillations, QPOs) of galactic and extra-galactic black holes based on shocked TCAF models appear to have a firm foundation.
The book contains a selection of contributions given at the 23th Congress on Differential Equations and Applications (CEDYA) / 13th Congress of Applied Mathematics (CMA) that took place at Castellon, Spain, in 2013. CEDYA is renowned as the congress of the Spanish Society of Applied Mathematics (SEMA) and constitutes the main forum and meeting point for applied mathematicians in Spain. The papers included in this book have been selected after a thorough refereeing process and provide a good summary of the recent activity developed by different groups working mainly in Spain on applications of mathematics to several fields of science and technology. The purpose is to provide a useful reference of academic and industrial researchers working in the area of numerical analysis and its applications.
The book is mainly addressed to young graduate students in engineering and natural sciences who start to face numerical simulation, either at a research level or in the field of industrial applications. The main subjects covered are: Biomechanics, Stochastic Calculus, Geophysical flow simulation and Shock-Capturing numerical methods for Hyperbolic Systems of Partial Differential Equations. The book can also be useful to researchers or even technicians working at an industrial environment, who are interested in the state-of-the-art numerical techniques in these fields. Moreover, it gives an overview of the research developed at the French and Spanish universities and in some European scientific institutions. This book can be also useful as a textbook at master courses in Mathematics, Physics or Engineering.
Mathematical algorithms are a fundamental component of Computer Aided Design and Manufacturing (CAD/CAM) systems. This book provides a bridge between algebraic geometry and geometric modelling algorithms, formulated within a computer science framework. Apart from the algebraic geometry topics covered, the entire book is based on the unifying concept of using algebraic techniques – properly specialized to solve geometric problems – to seriously improve accuracy, robustness and efficiency of CAD-systems. It provides new approaches as well as industrial applications to deform surfaces when animating virtual characters, to automatically compare images of handwritten signatures and to improve control of NC machines. This book further introduces a noteworthy representation based on 2D contours, which is essential to model the metal sheet in industrial processes. It additionally reviews applications of numerical algebraic geometry to differential equations systems with multiple solutions and bifurcations. Future Vision and Trends on Shapes, Geometry and Algebra is aimed specialists in the area of mathematics and computer science on the one hand and on the other hand at those who want to become familiar with the practical application of algebraic geometry and geometric modelling such as students, researchers and doctorates.
Honoring Andrei Agrachev's 60th birthday, this volume presents recent advances in the interaction between Geometric Control Theory and sub-Riemannian geometry. On the one hand, Geometric Control Theory used the differential geometric and Lie algebraic language for studying controllability, motion planning, stabilizability and optimality for control systems. The geometric approach turned out to be fruitful in applications to robotics, vision modeling, mathematical physics etc. On the other hand, Riemannian geometry and its generalizations, such as sub-Riemannian, Finslerian geometry etc., have been actively adopting methods developed in the scope of geometric control. Application of these methods has led to important results regarding geometry of sub-Riemannian spaces, regularity of sub-Riemannian distances, properties of the group of diffeomorphisms of sub-Riemannian manifolds, local geometry and equivalence of distributions and sub-Riemannian structures, regularity of the Hausdorff volume, etc.
This book addresses several mathematical models from the most relevant class of kp-Schrödinger systems. Both mathematical models and state-of-the-art numerical methods for adequately solving the arising systems of differential equations are presented. The operational principle of modern semiconductor nano structures, such as quantum wells, quantum wires or quantum dots, relies on quantum mechanical effects. The goal of numerical simulations using quantum mechanical models in the development of semiconductor nano structures is threefold: First they are needed for a deeper understanding of experimental data and of the operational principle. Secondly, they allow us to predict and optimize in advance the qualitative and quantitative properties of new devices in order to minimize the number of prototypes needed. Semiconductor nano structures are embedded as an active region in semiconductor devices. Thirdly and finally, the results of quantum mechanical simulations of semiconductor nano structures can be used with upscaling methods to deliver parameters needed in semi-classical models for semiconductor devices, such as quantum well lasers. This book covers in detail all these three aspects using a variety of illustrative examples. Readers will gain detailed insights into the status of the multiband effective mass method for semiconductor nano structures. Both users of the kp method as well as advanced researchers who want to advance the kp method further will find helpful information on how to best work with this method and use it as a tool for characterizing the physical properties of semiconductor nano structures. The book is primarily intended for graduate and Ph.D. students in applied mathematics, mathematical physics and theoretical physics, as well as all those working in quantum mechanical research or the semiconductor / opto-electronic industry who are interested in new mathematical aspects.
Sparse grids have gained increasing interest in recent years for the numerical treatment of high-dimensional problems. Whereas classical numerical discretization schemes fail in more than three or four dimensions, sparse grids make it possible to overcome the “curse” of dimensionality to some degree, extending the number of dimensions that can be dealt with. This volume of LNCSE collects the papers from the proceedings of the second workshop on sparse grids and applications, demonstrating once again the importance of this numerical discretization scheme. The selected articles present recent advances on the numerical analysis of sparse grids as well as efficient data structures, and the range of applications extends to uncertainty quantification settings and clustering, to name but a few examples.
This book covers the main mathematical and numerical models in computational electrocardiology, ranging from microscopic membrane models of cardiac ionic channels to macroscopic bidomain, monodomain, eikonal models and cardiac source representations. These advanced multiscale and nonlinear models describe the cardiac bioelectrical activity from the cell level to the body surface and are employed in both the direct and inverse problems of electrocardiology. The book also covers advanced numerical techniques needed to efficiently carry out large-scale cardiac simulations, including time and space discretizations, decoupling and operator splitting techniques, parallel finite element solvers. These techniques are employed in 3D cardiac simulations illustrating the excitation mechanisms, the anisotropic effects on excitation and repolarization wavefronts, the morphology of electrograms in normal and pathological tissue and some reentry phenomena. The overall aim of the book is to present rigorously the mathematical and numerical foundations of computational electrocardiology, illustrating the current research developments in this fast-growing field lying at the intersection of mathematical physiology, bioengineering and computational biomedicine. This book is addressed to graduate student and researchers in the field of applied mathematics, scientific computing, bioengineering, electrophysiology and cardiology.
This book collects papers presented during the European Workshop on High Order Nonlinear Numerical Methods for Evolutionary PDEs (HONOM 2013) that was held at INRIA Bordeaux Sud-Ouest, Talence, France in March, 2013. The central topic is high order methods for compressible fluid dynamics. In the workshop, and in this proceedings, greater emphasis is placed on the numerical than the theoretical aspects of this scientific field. The range of topics is broad, extending through algorithm design, accuracy, large scale computing, complex geometries, discontinuous Galerkin, finite element methods, Lagrangian hydrodynamics, finite difference methods and applications and uncertainty quantification. These techniques find practical applications in such fields as fluid mechanics, magnetohydrodynamics, nonlinear solid mechanics, and others for which genuinely nonlinear methods are needed.
Blind Source Separation intends to report the new results of the efforts on the study of Blind Source Separation (BSS). The book collects novel research ideas and some training in BSS, independent component analysis (ICA), artificial intelligence and signal processing applications. Furthermore, the research results previously scattered in many journals and conferences worldwide are methodically edited and presented in a unified form. The book is likely to be of interest to university researchers, R&D engineers and graduate students in computer science and electronics who wish to learn the core principles, methods, algorithms and applications of BSS. Dr. Ganesh R. Naik works at University of Technology, Sydney, Australia; Dr. Wenwu Wang works at University of Surrey, UK.
The importance of accuracy verification methods was understood at the very beginning of the development of numerical analysis. Recent decades have seen a rapid growth of results related to adaptive numerical methods and a posteriori estimates. However, in this important area there often exists a noticeable gap between mathematicians creating the theory and researchers developing applied algorithms that could be used in engineering and scientific computations for guaranteed and efficient error control. The goals of the book are to (1) give a transparent explanation of the underlying mathematical theory in a style accessible not only to advanced numerical analysts but also to engineers and students; (2) present detailed step-by-step algorithms that follow from a theory; (3) discuss their advantages and drawbacks, areas of applicability, give recommendations and examples.
This volume presents significant advances in a number of theories and problems of Mathematical Analysis and its applications in disciplines such as Analytic Inequalities, Operator Theory, Functional Analysis, Approximation Theory, Functional Equations, Differential Equations, Wavelets, Discrete Mathematics and Mechanics. The contributions focus on recent developments and are written by eminent scientists from the international mathematical community. Special emphasis is given to new results that have been obtained in the above mentioned disciplines in which Nonlinear Analysis plays a central role. Some review papers published in this volume will be particularly useful for a broader readership in Mathematical Analysis, as well as for graduate students. An attempt is given to present all subjects in this volume in a unified and self-contained manner, to be particularly useful to the mathematical community.
Leonardo wrote, “Mechanics is the paradise of the mathematical sciences, because by means of it one comes to the fruits of mathematics”; replace “Mechanics” by “Fluid mechanics” and here we are. - From the Preface to the Second Edition Although the exponential growth of computer power has advanced the importance of simulations and visualization tools for elaborating new models, designs and technologies, the discipline of fluid mechanics is still large, and turbulence in flows remains a challenging problem in classical physics. Like its predecessor, the revised and expanded Second Edition of this book addresses the basic principles of fluid mechanics and solves fluid flow problems where viscous effects are the dominant physical phenomena. Much progress has occurred in the half a century that has passed since the edition of 1964. As predicted, aspects of hydrodynamics once considered offbeat have risen to importance. For example, the authors have worked on problems where variations in viscosity and surface tension cannot be ignored. The advent of nanotechnology has broadened interest in the hydrodynamics of thin films, and hydromagnetic effects and radiative heat transfer are routinely encountered in materials processing. This monograph develops the basic equations, in the three most important coordinate systems, in a way that makes it easy to incorporate these phenomena into the theory. The book originally described by Prof. Langlois as "a monograph on theoretical hydrodynamics, written in the language of applied mathematics" offers much new coverage including the second principle of thermodynamics, the Boussinesq approximation, time dependent flows, Marangoni convection, Kovasznay flow, plane periodic solutions, Hele-Shaw cells, Stokeslets, rotlets, finite element methods, Wannier flow, corner eddies, and analysis of the Stokes operator.
This book presents a collection of computational intelligence algorithms that addresses issues in visual pattern recognition such as high computational complexity, abundance of pattern features, sensitivity to size and shape variations and poor performance against complex backgrounds. The book has 3 parts. Part 1 describes various research issues in the field with a survey of the related literature. Part 2 presents computational intelligence based algorithms for feature selection and classification. The algorithms are discriminative and fast. The main application area considered is hand posture recognition. The book also discusses utility of these algorithms in other visual as well as non-visual pattern recognition tasks including face recognition, general object recognition and cancer / tumor classification. Part 3 presents biologically inspired algorithms for feature extraction. The visual cortex model based features discussed have invariance with respect to appearance and size of the hand, and provide good inter class discrimination. A Bayesian model of visual attention is described which is effective in handling complex background problem in hand posture recognition. The book provides qualitative and quantitative performance comparisons for the algorithms outlined, with other standard methods in machine learning and computer vision. The book is self-contained with several figures, charts, tables and equations helping the reader to understand the material presented without instruction.
The Theory of Dynamical Systems was first introduced by the great mathematician Henri Poincaré as a qualitative study of differential equations. For more than forty years, Jacob Palis has made outstanding contributions to this area of mathematics. In the 1970s, following in the wake of Stephen Smale, he became one of the major figures in developing the Theory of Hyperbolic Dynamics and Structural Stability. This volume presents a selection of Jacob Palis’ mathematical contributions, starting with his PhD thesis and ending with papers on what is widely known as the Palis Conjecture. Most of the papers included in the present volume are inspired by the earlier work of Poincaré and, more recently, by Steve Smale among others. They aim at providing a description of the general structure of dynamical systems. Jacob Palis, whose work has been distinguished with numerous international prizes, is broadly recognized as the father of the Latin American School of Mathematics in Dynamical Systems and one of the most important scientific personalities on the continent. In 2010 he was awarded the Balzan Prize for his fundamental contributions in the Mathematical Theory of Dynamical Systems, which has been the basis for many applications in various scientific disciplines.
This book highlights recent compelling research results and trends in various aspects of contemporary mathematics, emphasizing applicabilitions to real-world situations. The chapters present exciting new findings and developments in situations where mathematical rigor is combined with common sense. A multi-disciplinary approach, both within each chapter and in the volume as a whole, leads to practical insights that may result in a more synthetic understanding of specific global issues as well as their possible solutions. The volume will be of interest not only to experts in mathematics, but also to graduate students, scientists, and practitioners from other fields including physics, biology, geology, management, and medicine.
This volume contains a selection of papers presented at the 21st international conference on domain decomposition methods in science and engineering held in Rennes, France, June 25-29, 2012. Domain decomposition is an active and interdisciplinary research discipline, focusing on the development, analysis and implementation of numerical methods for massively parallel computers. Domain decomposition methods are among the most efficient solvers for large scale applications in science and engineering. They are based on a solid theoretical foundation and shown to be scalable for many important applications. Domain decomposition techniques can also naturally take into account multiscale phenomena. This book contains the most recent results in this important field of research, both mathematically and algorithmically and allows the reader to get an overview of this exciting branch of numerical analysis and scientific computing.
The book presents twelve state of the art contributions in the field of numerical modeling of materials subjected to large strain, high strain rates, large pressure and high stress triaxialities, organized into two sections. The first part is focused on high strain rate-high pressures such as those occurring in impact dynamics and shock compression related phenomena, dealing with material response identification, advanced modeling incorporating microstructure and damage, stress waves propagation in solids and structures response under impact. The latter part is focused on large strain-low strain rates applications such as those occurring in technological material processing, dealing with microstructure and texture evolution, material response at elevated temperatures, structural behavior under large strain and multi axial state of stress.
This book presents the complete formulation of a new advanced discretization meshless technique: the Natural Neighbour Radial Point Interpolation Method (NNRPIM). In addition, two of the most popular meshless methods, the EFGM and the RPIM, are fully presented. Being a truly meshless method, the major advantages of the NNRPIM over the FEM and other meshless methods, are the remeshing flexibility and the higher accuracy of the obtained variable field. Using the natural neighbour concept, the NNRPIM permits to determine organically the influence-domain, resembling the cellulae natural behaviour. This innovation permits the analysis of convex boundaries and extremely irregular meshes, which is an advantage in the biomechanical analysis, with no extra computational effort associated. This volume shows how to extend the NNRPIM to the bone tissue remodelling analysis, expecting to contribute with new numerical tools and strategies in order to permit a more efficient numerical biomechanical analysis.
The focus of this book is on establishing theories and methods of both decision and game analysis in management using intuitionistic fuzzy sets. It proposes a series of innovative theories, models and methods such as the representation theorem and extension principle of intuitionistic fuzzy sets, ranking methods of intuitionistic fuzzy numbers, non-linear and linear programming methods for intuitionistic fuzzy multi-attribute decision making and (interval-valued) intuitionistic fuzzy matrix games. These theories and methods form the theory system of intuitionistic fuzzy decision making and games, which is not only remarkably different from those of the traditional, Bayes and/or fuzzy decision theory but can also provide an effective and efficient tool for solving complex management problems. Since there is a certain degree of inherent hesitancy in real-life management, which cannot always be described by the traditional mathematical methods and/or fuzzy set theory, this book offers an effective approach to using the intuitionistic fuzzy set expressed with membership and non-membership functions. This book is addressed to all those involved in theoretical research and practical applications from a variety of fields/disciplines: decision science, game theory, management science, fuzzy sets, operational research, applied mathematics, systems engineering, industrial engineering, economics, etc.
Die Autoren führen auf anschauliche und systematische Weise in die mathematische und informatische Modellierung sowie in die Simulation als universelle Methodik ein. Es geht um Klassen von Modellen und um die Vielfalt an Beschreibungsarten. Aber es geht immer auch darum, wie aus Modellen konkrete Simulationsergebnisse gewonnen werden können. Nach einem kompakten Repetitorium zum benötigten mathematischen Apparat wird das Konzept anhand von Szenarien u. a. aus den Bereichen „Spielen – entscheiden – planen" und „Physik im Rechner" umgesetzt.
This monograph describes the numerical analysis of non-linearities in structural mechanics, i.e. large rotations, large strain (geometric non-linearities), non-linear material behaviour, in particular elasto-plasticity as well as time-dependent behaviour, and contact. Based on that, the book treats stability problems and limit-load analyses, as well as non-linear equations of a large number of variables. Moreover, the author presents a wide range of problem sets and their solutions. The target audience primarily comprises advanced undergraduate and graduate students of mechanical and civil engineering, but the book may also be beneficial for practising engineers in industry.
This book includes selected papers presented at the MIMS (Mediterranean Institute for the Mathematical Sciences) - GGTM (Geometry and Topology Grouping for the Maghreb) conference, held in memory of Mohammed Salah Baouendi, a most renowned figure in the field of several complex variables, who passed away in 2011. All research articles were written by leading experts, some of whom are prize winners in the fields of complex geometry, algebraic geometry and analysis. The book offers a valuable resource for all researchers interested in recent developments in analysis and geometry.
In this thesis, novel Monte Carlo methods for precisely calculating the critical phenomena of the effectively frustrated quantum spin system are developed and applied to the critical phenomena of the spin-Peierls systems. Three significant methods are introduced for the first time: a new optimization algorithm of the Markov chain transition kernel based on the geometric weight-allocation approach, the extension of the worm (directed-loop) algorithm to nonconserved particles, and the combination with the level spectroscopy. Utilizing these methods, the phase diagram of the one-dimensional XXZ spin-Peierls system is elucidated. Furthermore, the multi-chain and two-dimensional spin-Peierls systems with interchain lattice interaction are investigated. The unbiased simulation shows that the interesting quantum phase transition between the 1D-like liquid phase and the macroscopically-degenerated dimer phase occurs on the fully-frustrated parameter line that separates the doubly-degenerated dimer phases in the two-dimensional phase diagram. The spin-phonon interaction in the spin-Peierls system introduces the spin frustration, which usually hinders the quantum Monte Carlo analysis, owing to the notorious negative sign problem. In this thesis, the author has succeeded in precisely calculating the critical phenomena of the effectively frustrated quantum spin system by means of the quantum Monte Carlo method without the negative sign.
The topics faced in this book cover a large spectrum of current trends in mathematics, such as Shimura varieties and the Lang lands program, zonotopal combinatorics, non linear potential theory, variational methods in imaging, Riemann holonomy and algebraic geometry, mathematical problems arising in kinetic theory, Boltzmann systems, Pell's equations in polynomials, deformation theory in non commutative algebras. This work contains a selection of contributions written by international leading mathematicians who were speakers at the "INdAM Day", an initiative born in 2004 to present the most recent developments in contemporary mathematics. |
You may like...
Correct Software in Web Applications and…
Bernhard Thalheim, Klaus-Dieter Schewe, …
Paperback
R1,455
Discovery Miles 14 550
Scientific Computing - An Introductory…
Michael T. Heath
Paperback
An Introduction to Numerical Methods - A…
Abdelwahab Kharab, Ronald Guenther
Hardcover
R4,105
Discovery Miles 41 050
Flight Mechanics Modeling and Analysis
Jitendra R. Raol, Jatinder Singh
Hardcover
R3,273
Discovery Miles 32 730
|