![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > General theory of computing > Mathematical theory of computation
The present book provides an introduction to using space-filling curves (SFC) as tools in scientific computing. Special focus is laid on the representation of SFC and on resulting algorithms. For example, grammar-based techniques are introduced for traversals of Cartesian and octree-type meshes, and arithmetisation of SFC is explained to compute SFC mappings and indexings. The locality properties of SFC are discussed in detail, together with their importance for algorithms. Templates for parallelisation and cache-efficient algorithms are presented to reflect the most important applications of SFC in scientific computing. Special attention is also given to the interplay of adaptive mesh refinement and SFC, including the structured refinement of triangular and tetrahedral grids. For each topic, a short overview is given on the most important publications and recent research activities.
The book contains a selection of high quality papers, chosen among the best presentations during the International Conference on Spectral and High-Order Methods (2012), and provides an overview of the depth and breath of the activities within this important research area. The carefully reviewed selection of the papers will provide the reader with a snapshot of state-of-the-art and help initiate new research directions through the extensive bibliography.
The book contains a selection of high quality papers, chosen among the best presentations during the International Conference on Spectral and High-Order Methods (2014), and provides an overview of the depth and breadth of the activities within this important research area. The carefully reviewed selection of papers will provide the reader with a snapshot of the state-of-the-art and help initiate new research directions through the extensive biography.
PATTERN CLASSIFICATION a unified view of statistical and neural approaches The product of years of research and practical experience in pattern classification, this book offers a theory-based engineering perspective on neural networks and statistical pattern classification. Pattern Classification sheds new light on the relationship between seemingly unrelated approaches to pattern recognition, including statistical methods, polynomial regression, multilayer perceptron, and radial basis functions. Important topics such as feature selection, reject criteria, classifier performance measurement, and classifier combinations are fully covered, as well as material on techniques that, until now, would have required an extensive literature search to locate. A full program of illustrations, graphs, and examples helps make the operations and general properties of different classification approaches intuitively understandable. Offering a lucid presentation of complex applications and their algorithms, Pattern Classification is an invaluable resource for researchers, engineers, and graduate students in this rapidly developing field.
All over the world sport plays a prominent role in society: as a leisure activity for many, as an ingredient of culture, as a business and as a matter of national prestige in such major events as the World Cup in soccer or the Olympic Games. Hence, it is not surprising that science has entered the realm of sports, and, in particular, that computer simulation has become highly relevant in recent years. This is explored in this book by choosing five different sports as examples, demonstrating that computational science and engineering (CSE) can make essential contributions to research on sports topics on both the fundamental level and, eventually, by supporting athletes' performance.
Here is a collection of nonlinear optimization applications from the real world, expressed in the General Algebraic Modeling System (GAMS). The concepts are presented so that the reader can quickly modify and update them to represent real-world situations.
The book comprises an assembly of benchmarks and examples for porous media mechanics collected over the last twenty years. Analysis of thermo-hydro-mechanical-chemical (THMC) processes is essential to many applications in environmental engineering, such as geological waste deposition, geothermal energy utilisation, carbon capture and storage, water resources management, hydrology, even climate chance. In order to assess the feasibility as well as the safety of geotechnical applications, process-based modelling is the only tool to put numbers, i.e. to quantify future scenarios. This charges a huge responsibility concerning the reliability of computational tools. Benchmarking is an appropriate methodology to verify the quality of modelling tools based on best practices. Moreover, benchmarking and code comparison foster community efforts. The benchmark book is part of the OpenGeoSys initiative - an open source project to share knowledge and experience in environmental analysis and scientific computation.
This book opens the door to a new interesting and ambitious world of reversible and quantum computing research. It presents the state of the art required to travel around that world safely. Top world universities, companies and government institutions are in a race of developing new methodologies, algorithms and circuits on reversible logic, quantum logic, reversible and quantum computing and nano-technologies. In this book, twelve reversible logic synthesis methodologies are presented for the first time in a single literature with some new proposals. Also, the sequential reversible logic circuitries are discussed for the first time in a book. Reversible logic plays an important role in quantum computing. Any progress in the domain of reversible logic can be directly applied to quantum logic. One of the goals of this book is to show the application of reversible logic in quantum computing. A new implementation of wavelet and multiwavelet transforms using quantum computing is performed for this purpose. Researchers in academia or industry and graduate students, who work in logic synthesis, quantum computing, nano-technology, and low power VLSI circuit design, will be interested in this book.
This book covers the new topic of GPU computing with many applications involved, taken from diverse fields such as networking, seismology, fluid mechanics, nano-materials, data-mining , earthquakes ,mantle convection, visualization. It will show the public why GPU computing is important and easy to use. It will offer a reason why GPU computing is useful and how to implement codes in an everyday situation.
This book contains a selection of the papers presented at the ITACOSM 2013 Conference, held in Milan in June 2013. It is intended as an international forum of scientific discussion on the developments of theory and application of survey sampling methodologies and applications in human and natural sciences. The book gathers research papers carefully selected from both invited and contributed sessions of the conference. The whole book appears to be a relevant contribution to various key aspects of sampling methodology and techniques; it deals with some hot topics in sampling theory, such as calibration, quantile-regression and multiple frame surveys and with innovative methodologies in important topics of both sampling theory and applications. Contributions cut across current sampling methodologies such as interval estimation for complex samples, randomized responses, bootstrap, weighting, modeling, imputation, small area estimation and effective use of auxiliary information; applications cover a wide and enlarging range of subjects in official household surveys, Bayesian networks, auditing, business and economic surveys, geostatistics and agricultural statistics. The book is an updated, high level reference survey addressed to researchers, professionals and practitioners in many fields.
This book offers a self-contained exposition of the theory of computability in a higher-order context, where 'computable operations' may themselves be passed as arguments to other computable operations. The subject originated in the 1950s with the work of Kleene, Kreisel and others, and has since expanded in many different directions under the influence of workers from both mathematical logic and computer science. The ideas of higher-order computability have proved valuable both for elucidating the constructive content of logical systems, and for investigating the expressive power of various higher-order programming languages. In contrast to the well-known situation for first-order functions, it turns out that at higher types there are several different notions of computability competing for our attention, and each of these has given rise to its own strand of research. In this book, the authors offer an integrated treatment that draws together many of these strands within a unifying framework, revealing not only the range of possible computability concepts but the relationships between them. The book will serve as an ideal introduction to the field for beginning graduate students, as well as a reference for advanced researchers
R is a powerful and free software system for data analysis and graphics, with over 5,000 add-on packages available. This book introduces R using SAS and SPSS terms with which you are already familiar. It demonstrates which of the add-on packages are most like SAS and SPSS and compares them to R's built-in functions. It steps through over 30 programs written in all three packages, comparing and contrasting the packages' differing approaches. The programs and practice datasets are available for download. The glossary defines over 50 R terms using SAS/SPSS jargon and again using R jargon. The table of contents and the index allow you to find equivalent R functions by looking up both SAS statements and SPSS commands. When finished, you will be able to import data, manage and transform it, create publication quality graphics, and perform basic statistical analyses. This new edition has updated programming, an expanded index, and even more statistical methods covered in over 25 new sections.
Thirty years ago mathematical, as opposed to applied numerical, computation was difficult to perform and so relatively little used. Three threads changed that: the emergence of the personal computer; the discovery of fiber-optics and the consequent development of the modern internet; and the building of the Three "M's" Maple, Mathematica and Matlab. We intend to persuade that Mathematica and other similar tools are worth knowing, assuming only that one wishes to be a mathematician, a mathematics educator, a computer scientist, an engineer or scientist, or anyone else who wishes/needs to use mathematics better. We also hope to explain how to become an "experimental mathematician" while learning to be better at proving things. To accomplish this our material is divided into three main chapters followed by a postscript. These cover elementary number theory, calculus of one and several variables, introductory linear algebra, and visualization and interactive geometric computation.
There have been substantial developments in meshfree methods, particle methods, and generalized finite element methods since the mid 1990s. The growing interest in these methods is in part due to the fact that they offer extremely flexible numerical tools and can be interpreted in a number of ways. For instance, meshfree methods can be viewed as a natural extension of classical finite element and finite difference methods to scattered node configurations with no fixed connectivity. Furthermore, meshfree methods have a number of advantageous features that are especially attractive when dealing with multiscale phenomena: A-priori knowledge about the solution's particular local behavior can easily be introduced into the meshfree approximation space, and coarse scale approximations can be seamlessly refined by adding fine scale information. However, the implementation of meshfree methods and their parallelization also requires special attention, for instance with respect to numerical integration.
Applied Numerical Linear Algebra introduces students to numerical issues that arise in linear algebra and its applications. A wide range of techniques are touched on, including direct to iterative methods, orthogonal factorizations, least squares, eigenproblems, and nonlinear equations. Inside Applied Numerical Linear Algebra, readers will find: Clear and detailed explanations on a wide range of topics from condition numbers to the singular value decomposition. Material on nonlinear systems as well as linear systems. Frequent illustrations using discretizations of boundary-value problems or demonstrating other concepts. Exercises with detailed solutions at the end of the book. Supplemental material available at https://bookstore.siam.org/cl87/bonus. This textbook is appropriate for junior and senior undergraduate students and beginning graduate students in the following courses: Advanced Numerical Analysis, Special Topics on Numerical Analysis, Topics on Data Science, Topics on Numerical Optimization, and Topics on Approximation Theory.
This book offers a snapshot of the state-of-the-art in classification at the interface between statistics, computer science and application fields. The contributions span a broad spectrum, from theoretical developments to practical applications; they all share a strong computational component. The topics addressed are from the following fields: Statistics and Data Analysis; Machine Learning and Knowledge Discovery; Data Analysis in Marketing; Data Analysis in Finance and Economics; Data Analysis in Medicine and the Life Sciences; Data Analysis in the Social, Behavioural, and Health Care Sciences; Data Analysis in Interdisciplinary Domains; Classification and Subject Indexing in Library and Information Science. The book presents selected papers from the Second European Conference on Data Analysis, held at Jacobs University Bremen in July 2014. This conference unites diverse researchers in the pursuit of a common topic, creating truly unique synergies in the process.
This proceedings volume is a collection of peer reviewed papers presented at the 8th International Conference on Soft Methods in Probability and Statistics (SMPS 2016) held in Rome (Italy). The book is dedicated to Data science which aims at developing automated methods to analyze massive amounts of data and to extract knowledge from them. It shows how Data science employs various programming techniques and methods of data wrangling, data visualization, machine learning, probability and statistics. The soft methods proposed in this volume represent a collection of tools in these fields that can also be useful for data science.
This book presents new research results in multidisciplinary fields of mathematical and numerical modelling in mechanics. The chapters treat the topics: mathematical modelling in solid, fluid and contact mechanics nonconvex variational analysis with emphasis to nonlinear solid and structural mechanics numerical modelling of problems with non-smooth constitutive laws, approximation of variational and hemivariational inequalities, numerical analysis of discrete schemes, numerical methods and the corresponding algorithms, applications to mechanical engineering numerical aspects of non-smooth mechanics, with emphasis on developing accurate and reliable computational tools mechanics of fibre-reinforced materials behaviour of elasto-plastic materials accounting for the microstructural defects definition of structural defects based on the differential geometry concepts or on the atomistic basis interaction between phase transformation and dislocations at nano-scale energetic arguments bifurcation and post-buckling analysis of elasto-plastic structures engineering optimization and design, global optimization and related algorithms The book presents selected papers presented at ETAMM 2016. It includes new and original results written by internationally recognized specialists.
This book discusses major milestones in Rohit Jivanlal Parikh's scholarly work. Highlighting the transition in Parikh's interest from formal languages to natural languages, and how he approached Wittgenstein's philosophy of language, it traces the academic trajectory of a brilliant scholar whose work opened up various new avenues in research. This volume is part of Springer's book series Outstanding Contributions to Logic, and honours Rohit Parikh and his works in many ways. Parikh is a leader in the realm of ideas, offering concepts and definitions that enrich the field and lead to new research directions. Parikh has contributed to a variety of areas in logic, computer science and game theory. In mathematical logic his contributions have been in recursive function theory, proof theory and non-standard analysis; in computer science, in the areas of modal, temporal and dynamic logics of programs and semantics of programs, as well as logics of knowledge; in artificial intelligence in the area of belief revision; and in game theory in the formal analysis of social procedures, with a strong undercurrent of philosophy running through all his work.This is not a collection of articles limited to one theme, or even directly connected to specific works by Parikh, but instead all papers are inspired and influenced by Parikh in some way, adding structures to and enriching "Parikh-land". The book presents a brochure-like overview of Parikh-land before providing an "introductory video" on the sights and sounds that you experience when reading the book.
This book takes a foundational approach to the semantics of probabilistic programming. It elaborates a rigorous Markov chain semantics for the probabilistic typed lambda calculus, which is the typed lambda calculus with recursion plus probabilistic choice. The book starts with a recapitulation of the basic mathematical tools needed throughout the book, in particular Markov chains, graph theory and domain theory, and also explores the topic of inductive definitions. It then defines the syntax and establishes the Markov chain semantics of the probabilistic lambda calculus and, furthermore, both a graph and a tree semantics. Based on that, it investigates the termination behavior of probabilistic programs. It introduces the notions of termination degree, bounded termination and path stoppability and investigates their mutual relationships. Lastly, it defines a denotational semantics of the probabilistic lambda calculus, based on continuous functions over probability distributions as domains. The work mostly appeals to researchers in theoretical computer science focusing on probabilistic programming, randomized algorithms, or programming language theory.
This book provides a survey on different kinds of Feistel ciphers, with their definitions and mathematical/computational properties. Feistel ciphers are widely used in cryptography in order to obtain pseudorandom permutations and secret-key block ciphers. In Part 1, we describe Feistel ciphers and their variants. We also give a brief story of these ciphers and basic security results. In Part 2, we describe generic attacks on Feistel ciphers. In Part 3, we give results on DES and specific Feistel ciphers. Part 4 is devoted to improved security results. We also give results on indifferentiability and indistinguishability.
Starting with an introduction to the numerous features of Mathematica (R), this book continues with more complex material. It provides the reader with lots of examples and illustrations of how the benefits of Mathematica (R) can be used. Composed of eleven chapters, it includes the following: A chapter on several sorting algorithms Functions (planar and solid) with many interesting examples Ordinary differential equations Advantages of Mathematica (R) dealing with the Pi number The power of Mathematica (R) working with optimal control problems Introduction to Mathematica (R) with Applications will appeal to researchers, professors and students requiring a computational tool.
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the first publication in the Lecture Notes in Logic series, Shoenfield gives a clear and focused introduction to recursion theory. The fundamental concept of recursion makes the idea of computability accessible to a mathematical analysis, thus forming one of the pillars on which modern computer science rests. This introduction is an ideal instrument for teaching and self-study that prepares the reader for the study of advanced monographs and the current literature on recursion theory.
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. This volume, the second publication in the Lecture Notes in Logic series, is the proceedings of the Association for Symbolic Logic meeting held in Helsinki, Finland, in July 1990. It contains eighteen papers by leading researchers, covering all fields of mathematical logic from the philosophy of mathematics, through model theory, proof theory, recursion theory, and set theory, to the connections of logic to computer science. The articles published here are still widely cited and continue to provide ideas for ongoing research projects.
This contributed volume offers a collection of papers presented at the 2016 Network Games, Control, and Optimization conference (NETGCOOP), held at the University of Avignon in France, November 23-25, 2016. These papers highlight the increasing importance of network control and optimization in many networking application domains, such as mobile and fixed access networks, computer networks, social networks, transportation networks, and, more recently, electricity grids and biological networks. Covering a wide variety of both theoretical and applied topics in the areas listed above, the authors explore several conceptual and algorithmic tools that are needed for efficient and robust control operation, performance optimization, and better understanding the relationships between entities that may be acting cooperatively or selfishly in uncertain and possibly adversarial environments. As such, this volume will be of interest to applied mathematicians, computer scientists, engineers, and researchers in other related fields. |
![]() ![]() You may like...
Research Handbook on General Principles…
Katja S. Ziegler, Paivi J. Neuvonen, …
Hardcover
R7,870
Discovery Miles 78 700
The Economic Analysis of Civil Law
Hans-Bernd Schafer, Claus Ott
Paperback
R1,614
Discovery Miles 16 140
|