![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > General theory of computing > Mathematical theory of computation
Essentially there are two variational theories of liquid crystals explained in this book. The theory put forward by Zocher, Oseen and Frank is classical, while that proposed by Ericksen is newer in its mathematical formulation although it has been postulated in the physical literature for the past two decades. The newer theory provides a better explanation of defects in liquid crystals, especially of those concentrated on lines and surfaces, which escape the scope of the classical theory. The book opens the way to the wealth of applications that will follow.
Although there are hundreds of books about MATLAB, there are no books that fully explore its value in the field of business economics. Few books describe how geographic information can be explicitly incorporated in business decisions, or explain how sophisticated MATLAB applications can be provided to users via the Internet using a remote-hosted, thin client environment.
This book presents the state-of-the-art methodology and detailed analytical models and methods used to assess the reliability of complex systems and related applications in statistical reliability engineering. It is a textbook based mainly on the author's recent research and publications as well as experience of over 30 years in this field. The book covers a wide range of methods and models in reliability, and their applications, including: statistical methods and model selection for machine learning; models for maintenance and software reliability; statistical reliability estimation of complex systems; and statistical reliability analysis of k out of n systems, standby systems and repairable systems. Offering numerous examples and solved problems within each chapter, this comprehensive text provides an introduction to reliability engineering graduate students, a reference for data scientists and reliability engineers, and a thorough guide for researchers and instructors in the field.
More than ever before, complicated mathematical procedures are integral to the success and advancement of technology, engineering, and even industrial production. Knowledge of and experience with these procedures is therefore vital to present and future scientists, engineers and technologists.
Originally published in 1979. An Input/output database is an information system carrying current data on the intermediate consumption of any product or service by all the specified major firms that consume it. This book begins with a survey of how the interrelationships of an economic system can be represented in a two-dimensional model which traces the output of each economic sector to all other sectors. It talks about how the use of such databases to identify major buyers and sellers can illuminate problems of economic policy at the national, regional, and corporate level and aid in analyzing factors affecting the control of inflation, energy use, transportation, and environmental pollution. The book discusses how advances in database technology, have brought to the fore such issues as the right to individual privacy, corporate secrecy, the public's right of access to stored data, and the use of such information for national planning in a free-enterprise society.
How can one be assured that computer codes that solve differential equations are correct? Standard practice using benchmark testing no longer provides full coverage because today's production codes solve more complex equations using more powerful algorithms. By verifying the order-of-accuracy of the numerical algorithm implemented in the code, one can detect most any coding mistake that would prevent correct solutions from being computed.
'Points, questions, stories, and occasional rants introduce the 24 chapters of this engaging volume. With a focus on mathematics and peppered with a scattering of computer science settings, the entries range from lightly humorous to curiously thought-provoking. Each chapter includes sections and sub-sections that illustrate and supplement the point at hand. Most topics are self-contained within each chapter, and a solid high school mathematics background is all that is needed to enjoy the discussions. There certainly is much to enjoy here.'CHOICEEver notice how people sometimes use math words inaccurately? Or how sometimes you instinctively know a math statement is false (or not known)?Each chapter of this book makes a point like those above and then illustrates the point by doing some real mathematics through step-by-step mathematical techniques.This book gives readers valuable information about how mathematics and theoretical computer science work, while teaching them some actual mathematics and computer science through examples and exercises. Much of the mathematics could be understood by a bright high school student. The points made can be understood by anyone with an interest in math, from the bright high school student to a Field's medal winner.
Fuzzy Cluster Analysis presents advanced and powerful fuzzy clustering techniques. This thorough and self-contained introduction to fuzzy clustering methods and applications covers classification, image recognition, data analysis and rule generation. Combining theoretical and practical perspectives, each method is analysed in detail and fully illustrated with examples. Features include:
Among the most exciting developments in science today is the design and construction of the quantum computer. Its realization will be the result of multidisciplinary efforts, but ultimately, it is mathematics that lies at the heart of theoretical quantum computer science.
Recently molecular biology has undergone unprecedented development generating vast quantities of data needing sophisticated computational methods for analysis, processing and archiving. This requirement has given birth to the truly interdisciplinary field of computational biology, or bioinformatics, a subject reliant on both theoretical and practical contributions from statistics, mathematics, computer science and biology.
This book explores and articulates the concepts of the continuous and the infinitesimal from two points of view: the philosophical and the mathematical. The first section covers the history of these ideas in philosophy. Chapter one, entitled 'The continuous and the discrete in Ancient Greece, the Orient and the European Middle Ages,' reviews the work of Plato, Aristotle, Epicurus, and other Ancient Greeks; the elements of early Chinese, Indian and Islamic thought; and early Europeans including Henry of Harclay, Nicholas of Autrecourt, Duns Scotus, William of Ockham, Thomas Bradwardine and Nicolas Oreme. The second chapter of the book covers European thinkers of the sixteenth and seventeenth centuries: Galileo, Newton, Leibniz, Descartes, Arnauld, Fermat, and more. Chapter three, 'The age of continuity,' discusses eighteenth century mathematicians including Euler and Carnot, and philosophers, among them Hume, Kant and Hegel. Examining the nineteenth and early twentieth centuries, the fourth chapter describes the reduction of the continuous to the discrete, citing the contributions of Bolzano, Cauchy and Reimann. Part one of the book concludes with a chapter on divergent conceptions of the continuum, with the work of nineteenth and early twentieth century philosophers and mathematicians, including Veronese, Poincare, Brouwer, and Weyl. Part two of this book covers contemporary mathematics, discussing topology and manifolds, categories, and functors, Grothendieck topologies, sheaves, and elementary topoi. Among the theories presented in detail are non-standard analysis, constructive and intuitionist analysis, and smooth infinitesimal analysis/synthetic differential geometry. No other book so thoroughly covers the history and development of the concepts of the continuous and the infinitesimal.
Rapid developments in the field of genetic algorithms along with the popularity of the first edition precipitated this completely revised, thoroughly updated second edition of The Practical Handbook of Genetic Algorithms. Like its predecessor, this edition helps practitioners stay up to date on recent developments in the field and provides material they can use productively in their own endeavors.
The central subject of the book is the generalization of Loewy's decomposition - originally introduced by him for linear ordinary differential equations - to linear partial differential equations. Equations for a single function in two independent variables of order two or three are comprehensively discussed. A complete list of possible solution types is given. Various ad hoc results available in the literature are obtained algorithmically. The border of decidability for generating a Loewy decomposition are explicitly stated. The methods applied may be generalized in an obvious way to equations of higher order, in more variables or systems of such equations.
"This text covers key mathematical principles and algorithms for
nonlinear filters used in image processing. Readers will gain an
in-depth understanding of the underlying mathematical and filter
design methodologies needed to construct and use nonlinear filters
in a variety of applications.
Transfer function form, zpk, state space, modal, and state space modal forms. For someone learning dynamics for the first time or for engineers who use the tools infrequently, the options available for constructing and representing dynamic mechanical models can be daunting. It is important to find a way to put them all in perspective and have them available for quick reference.
Expanded to include a broader range of problems than the bestselling first edition, Finite Element Method Using MATLAB: Second Edition presents finite element approximation concepts, formulation, and programming in a format that effectively streamlines the learning process. It is written from a general engineering and mathematical perspective rather than that of a solid/structural mechanics basis.
This book introduces an important group of logics that have come to
be known under the umbrella term 'susbstructural'. Substructural
logics have independently led to significant developments in
philosophy, computing and linguistics. An Introduction to
Substrucural Logics is the first book to systematically survey the
new results and the significant impact that this class of logics
has had on a wide range of fields.The following topics are covered:
The author of the "Programmer's Toolbox" column shows how to use powerful math functions to achieve optimal real-time performance in programming. Along the way, readers will gain new understanding of math fundamentals, learn how to write more robust software for real-time systems, and discover how to implement math algorithms efficiently and accurately. The toolkit is bundled with a CD-ROM containing an arsenal of math algorithms to make the learning process easy and fun.
Are some areas of fast Fourier transforms still unclear to you? Do the notation and vocabulary seem inconsistent? Does your knowledge of their algorithmic aspects feel incomplete? The fast Fourier transform represents one of the most important advancements in scientific and engineering computing. Until now, however, treatments have been either brief, cryptic, intimidating, or not published in the open literature. Inside the FFT Black Box brings the numerous and varied ideas together in a common notational framework, clarifying vague FFT concepts. Examples and diagrams explain algorithms completely, with consistent notation. This approach connects the algorithms explicitly to the underlying mathematics. Reviews and explanations of FFT ideas taken from engineering, mathematics, and computer science journals teach the computational techniques relevant to FFT. Two appendices familiarize readers with the design and analysis of computer algorithms, as well. This volume employs a unified and systematic approach to FFT. It closes the gap between brief textbook introductions and intimidating treatments in the FFT literature. Inside the FFT Black Box provides an up-to-date, self-contained guide for learning the FFT and the multitude of ideas and computing techniques it employs.
Computational Geometry is an area that provides solutions to
geometric problems which arise in applications including Geographic
Information Systems, Robotics and Computer Graphics. This Handbook
provides an overview of key concepts and results in Computational
Geometry. It may serve as a reference and study guide to the field.
Not only the most advanced methods or solutions are described, but
also many alternate ways of looking at problems and how to solve
them.
"Covers design methods for optimal (or quasioptimal) control algorithms in the form of synthesis for deterministic and stochastic dynamical systems-with applications in aerospace, robotic, and servomechanical technologies. Providing new results on exact and approximate solutions of optimal control problems."
The subject of this book is the analysis and design of digital devices that implement computer arithmetic. The book's presentation of high-level detail, descriptions, formalisms and design principles means that it can support many research activities in this field, with an emphasis on bridging the gap between algorithm optimization and hardware implementation. The author provides a unified view linking the domains of digital design and arithmetic algorithms, based on original formalisms and hardware description languages. A feature of the book is the large number of examples and the implementation details provided. While the author does not avoid high-level details, providing for example gate-level designs for all matrix/combinational arithmetic structures. The book is suitable for researchers and students engaged with hardware design in computer science and engineering. A feature of the book is the large number of examples and the implementation details provided. While the author does not avoid high-level details, providing for example gate-level designs for all matrix/combinational arithmetic structures. The book is suitable for researchers and students engaged with hardware design in computer science and engineering.
Digital Signal Processing Algorithms describes computational number theory and its applications to deriving fast algorithms for digital signal processing. It demonstrates the importance of computational number theory in the design of digital signal processing algorithms and clearly describes the nature and structure of the algorithms themselves. The book has two primary focuses: first, it establishes the properties of discrete-time sequence indices and their corresponding fast algorithms; and second, it investigates the properties of the discrete-time sequences and the corresponding fast algorithms for processing these sequences. |
![]() ![]() You may like...
Fundamentals of Femtosecond Optics
S. A. Kozlov, V.V. Samartsev
Hardcover
R3,263
Discovery Miles 32 630
Smart Village Technology - Concepts and…
Srikanta Patnaik, Siddhartha Sen, …
Hardcover
R4,947
Discovery Miles 49 470
EuCoMeS 2018 - Proceedings of the 7th…
Burkhard Corves, Philippe Wenger, …
Hardcover
R4,422
Discovery Miles 44 220
|