![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > General theory of computing > Mathematical theory of computation
Term rewriting systems, which developed out of mathematical logic, consist of sequences of discrete steps where one term is replaced with another. Their many applications range from automatic theorem proving systems to computer algebra. This book begins with several examples, followed by a chapter on basic notions that provides a foundation for the rest of the work. First-order and higher-order theories are presented, with much of the latter material appearing for the first time in book form. Subjects treated include orthogonality, termination, lambda calculus and term graph rewriting. There is also a chapter detailing the required mathematical background.
This practical guidebook describes the basic concepts, the mathematical developments, and the engineering methodologies for exploiting possibility theory for the computer-based design of an information fusion system where the goal is decision support for industries in smart ICT (information and communications technologies). This exploitation of possibility theory improves upon probability theory, complements Dempster-Shafer theory, and fills an important gap in this era of Big Data and Internet of Things. The book discusses fundamental possibilistic concepts: distribution, necessity measure, possibility measure, joint distribution, conditioning, distances, similarity measures, possibilistic decisions, fuzzy sets, fuzzy measures and integrals, and finally, the interrelated theories of uncertainty..uncertainty. These topics form an essential tour of the mathematical tools needed for the latter chapters of the book. These chapters present applications related to decision-making and pattern recognition schemes, and finally, a concluding chapter on the use of possibility theory in the overall challenging design of an information fusion system. This book will appeal to researchers and professionals in the field of information fusion and analytics, information and knowledge processing, smart ICT, and decision support systems.
This book approaches condensed matter physics from the perspective of quantum information science, focusing on systems with strong interaction and unconventional order for which the usual condensed matter methods like the Landau paradigm or the free fermion framework break down. Concepts and tools in quantum information science such as entanglement, quantum circuits, and the tensor network representation prove to be highly useful in studying such systems. The goal of this book is to introduce these techniques and show how they lead to a new systematic way of characterizing and classifying quantum phases in condensed matter systems. The first part of the book introduces some basic concepts in quantum information theory which are then used to study the central topic explained in Part II: local Hamiltonians and their ground states. Part III focuses on one of the major new phenomena in strongly interacting systems, the topological order, and shows how it can essentially be defined and characterized in terms of entanglement. Part IV shows that the key entanglement structure of topological states can be captured using the tensor network representation, which provides a powerful tool in the classification of quantum phases. Finally, Part V discusses the exciting prospect at the intersection of quantum information and condensed matter physics - the unification of information and matter. Intended for graduate students and researchers in condensed matter physics, quantum information science and related fields, the book is self-contained and no prior knowledge of these topics is assumed.
This book features selected papers from the 6th International Conference on Mathematics and Computing (ICMC 2020), organized by Sikkim University, Gangtok, Sikkim, India, during September 2020. It covers recent advances in the field of mathematics, statistics, and scientific computing. The book presents innovative work by leading academics, researchers, and experts from industry.
Edited in collaboration with FoLLI, the Association of Logic, Language and Information this book constitutes the refereed proceedings of the Second Interdisciplinary Workshop on Logic, Language, and Meaning, TLLM 2020, held in Tsinghua, China, in December 2020. The 12 full papers together presented were fully reviewed and selected from 40 submissions. Due to COVID-19 the workshop will be held online. The workshop covers a wide range of topics where monotonicity is discussed in the context of logic, causality, belief revision, quantification, polarity, syntax, comparatives, and various semantic phenomena in particular languages.
This book constitutes the proceedings of the Third International Conference on 6G for Future Wireless Networks, 6GN 2020, held in Tianjin, China, in August 2020. The conference was held virtually due to the COVID-19 pandemic. The 45 full papers were selected from 109 submissions and present the state of the art and practical applications of 6G technologies. The papers are arranged thematically on network scheduling and optimization; wireless system and platform; intelligent applications; network performance evaluation; cyber security and privacy; technologies for private 5G/6G.
This book constitutes the proceedings of the 26th International Conference on Conceptual Structures, ICCS 2021, held virtually in September 2021.The 12 full papers and 4 short papers presented were carefully reviewed and selected from 25 submissions. The papers focus on the representation of and reasoning with conceptual structures in a variety of contexts. The papers are organized in the following topical sections: applications of conceptual structures; theory on conceptual structures, and mining conceptual structures.
This book constitutes refereed proceedings of the 20th International Conference on Mathematical Optimization Theory and Operations Research, MOTOR 2021, held in Irkutsk, Russia, in July 2021. Due to the COVID-19 pandemic the conference was held online. The 31 full papers and 3 short papers presented in this volume were carefully reviewed and selected from a total of 102 submissions. The papers in the volume are organised according to the following topical headings: continuous optimization; integer programming and combinatorial optimization; operational research applications; optimal control.
Computability theory originated with the seminal work of Gödel, Church, Turing, Kleene and Post in the 1930s. This theory includes a wide spectrum of topics, such as the theory of reducibilities and their degree structures, computably enumerable sets and their automorphisms, and subrecursive hierarchy classifications. Recent work in computability theory has focused on Turing definability and promises to have far-reaching mathematical, scientific, and philosophical consequences.
This book presents the state of the art in the fields of formal logic pioneered by Graham Priest. It includes advanced technical work on the model and proof theories of paraconsistent logic, in contributions from top scholars in the field. Graham Priest's research has had a considerable influence on the field of philosophical logic, especially with respect to the themes of dialetheism-the thesis that there exist true but inconsistent sentences-and paraconsistency-an account of deduction in which contradictory premises do not entail the truth of arbitrary sentences. Priest's work has regularly challenged researchers to reappraise many assumptions about rationality, ontology, and truth. This book collects original research by some of the most esteemed scholars working in philosophical logic, whose contributions explore and appraise Priest's work on logical approaches to problems in philosophy, linguistics, computation, and mathematics. They provide fresh analyses, critiques, and applications of Priest's work and attest to its continued relevance and topicality. The book also includes Priest's responses to the contributors, providing a further layer to the development of these themes .
New insight in many scientific and engineering fields is unthinkable without the use of numerical simulations running efficiently on modern computers. The faster we get new results, the bigger and accurate are the problems that we can solve. It is the combination of mathematical ideas plus efficient programming that drives the progress in many disciplines. Future champions in the area thus will have to be qualified in their application domain, they will need a profound understanding of some mathematical ideas, and they need the skills to deliver fast code. The present textbook targets students which have programming skills already and do not shy away from mathematics, though they might be educated in computer science or an application domain. It introduces the basic concepts and ideas behind applied mathematics and parallel programming that we need to write numerical simulations for today's multicore workstations. Our intention is not to dive into one particular application domain or to introduce a new programming language - we lay the generic foundations for future courses and projects in the area. The text is written in an accessible style which is easy to digest for students without years and years of mathematics education. It values clarity and intuition over formalism, and uses a simple N-body simulation setup to illustrate basic ideas that are of relevance in various different subdomains of scientific computing. Its primary goal is to make theoretical and paradigmatic ideas accessible to undergraduate students and to bring the fascination of the field across.
This book constitutes the refereed proceedings of the 8th International Symposium on Integrated Uncertainty in Knowledge Modelling and Decision Making, IUKM 2020, held in Phuket, Thailand, in November 2020.* The 35 full papers presented were carefully reviewed and selected from 55 submissions. The papers deal with all aspects of uncertainty modelling and management and are organized in topical sections on uncertainty management and decision support; machine learning; machine learning applications; econometric applications; and statistical methods. * The conference was held virtually due to the COVID-19 pandemic.
This book constitutes the refereed post-conference proceedings of the 6th Russian Supercomputing Days, RuSCDays 2020, held in Moscow, Russia, in September 2020.* The 51 revised full and 4 revised short papers presented were carefully reviewed and selected from 106 submissions. The papers are organized in the following topical sections: parallel algorithms; supercomputer simulation; HPC, BigData, AI: architectures, technologies, tools; and distributed and cloud computing. * The conference was held virtually due to the COVID-19 pandemic.
This book outlines the scientific career of Arto Salomaa, a pioneer in theoretical computer science and mathematics. The author first interviewed the subject and his family and collaborators, and he then researched this fascinating biography of an intellectual who was key in the development of these fields. Early chapters progress chronologically from Academician Salomaa's origins, childhood, and education to his professional successes in science, teaching, and publishing. His most impactful direct research efforts have been in the areas of automata and formal languages. Beyond that he has influenced many more scientists and professionals through collaborations, teaching, and books on topics such as biocomputing and cryptography. The author offers insights into Finnish history, culture, and academia, while historians of computer science will appreciate the vignettes describing some of the people who have shaped the field from the 1950s to today. The author and his subject return throughout to underlying themes such as the importance of family and the value of longstanding collegial relationships, while the work and achievements are leavened with humor and references to interests such as music, sport, and the sauna.
This book features selected papers from the 5th International Conference on Mathematics and Computing (ICMC 2019), organized by the School of Computer Engineering, Kalinga Institute of Industrial Technology Bhubaneswar, India, on February 6 - 9, 2019. Covering recent advances in the field of mathematics, statistics and scientific computing, the book presents innovative work by leading academics, researchers and experts from industry.
The focus of these conference proceedings is on research, development, and applications in the fields of numerical geometry, scientific computing and numerical simulation, particularly in mesh generation and related problems. In addition, this year's special focus is on Voronoi diagrams and their applications, celebrating the 150th birthday of G.F. Voronoi. In terms of content, the book strikes a balance between engineering algorithms and mathematical foundations. It presents an overview of recent advances in numerical geometry, grid generation and adaptation in terms of mathematical foundations, algorithm and software development and applications. The specific topics covered include: quasi-conformal and quasi-isometric mappings, hyperelastic deformations, multidimensional generalisations of the equidistribution principle, discrete differential geometry, spatial and metric encodings, Voronoi-Delaunay theory for tilings and partitions, duality in mathematical programming and numerical geometry, mesh-based optimisation and optimal control methods. Further aspects examined include iterative solvers for variational problems and algorithm and software development. The applications of the methods discussed are multidisciplinary and include problems from mathematics, physics, biology, chemistry, material science, and engineering.
This book bridges the gaps between logic, mathematics and computer science by delving into the theory of well-quasi orders, also known as wqos. This highly active branch of combinatorics is deeply rooted in and between many fields of mathematics and logic, including proof theory, commutative algebra, braid groups, graph theory, analytic combinatorics, theory of relations, reverse mathematics and subrecursive hierarchies. As a unifying concept for slick finiteness or termination proofs, wqos have been rediscovered in diverse contexts, and proven to be extremely useful in computer science. The book introduces readers to the many facets of, and recent developments in, wqos through chapters contributed by scholars from various fields. As such, it offers a valuable asset for logicians, mathematicians and computer scientists, as well as scholars and students.
Numerical Linear Algebra with Julia provides in-depth coverage of fundamental topics in numerical linear algebra, including how to solve dense and sparse linear systems, compute QR factorizations, compute the eigendecomposition of a matrix, and solve linear systems using iterative methods such as conjugate gradient. The style is friendly and approachable and cartoon characters guide the way. Inside this book, readers will find detailed descriptions of algorithms, implementations in Julia that illustrate concepts and allow readers to explore methods on their own, and illustrations and graphics that emphasize core concepts and demonstrate algorithms. Numerical Linear Algebra with Julia is a textbook for undergraduate and graduate students. It is appropriate for the following courses: Advanced Numerical Analysis, Special Topics on Numerical Analysis, Topics on Data Science, Topics on Numerical Optimization, and Topics on Approximation Theory. The book may also serve as a reference for researchers in various fields such as computational engineering, statistics, data-science, and machine learning, who depend on numerical solvers in linear algebra.
This book gathers the proceedings of the 2018 Abel Symposium, which was held in Geiranger, Norway, on June 4-8, 2018. The symposium offered an overview of the emerging field of "Topological Data Analysis". This volume presents papers on various research directions, notably including applications in neuroscience, materials science, cancer biology, and immune response. Providing an essential snapshot of the status quo, it represents a valuable asset for practitioners and those considering entering the field.
The focus of this book is on bridging the gap between two extreme methods for developing software. On the one hand, there are texts and approaches that are so formal that they scare off all but the most dedicated theoretical computer scientists. On the other, there are some who believe that any measure of formality is a waste of time, resulting in software that is developed by following gut feelings and intuitions. Kourie and Watson advocate an approach known as "correctness-by-construction," a technique to derive algorithms that relies on formal theory, but that requires such theory to be deployed in a very systematic and pragmatic way. First they provide the key theoretical background (like first-order predicate logic or refinement laws) that is needed to understand and apply the method. They then detail a series of graded examples ranging from binary search to lattice cover graph construction and finite automata minimization in order to show how it can be applied to increasingly complex algorithmic problems. The principal purpose of this book is to change the way software developers approach their task at programming-in-the-small level, with a view to improving code quality. Thus it coheres with both the IEEE's Guide to the Software Engineering Body of Knowledge (SWEBOK) recommendations, which identifies themes covered in this book as part of the software engineer's arsenal of tools and methods, and with the goals of the Software Engineering Method and Theory (SEMAT) initiative, which aims to "refound software engineering based on a solid theory.""
This edited book brings together research work in the field of constructive semantics with scholarship on the phenomenological foundations of logic and mathematics. It addresses one of the central issues in the epistemology and philosophy of mathematics, namely the relationship between phenomenological meaning constitution and constructive semantics. Contributing authors explore deep structural connections and fundamental differences between phenomenology and constructivism. Papers are drawn from contributions to a prestigious workshop held at the University of Friedrichshafen. Readers will discover insight into structural connections between the phenomenological concept of meaning constitution and constructivist concepts of meaning. Discussion ranges from more specific conceptualizations in the philosophy of logic and mathematics to more general considerations in epistemology, inferential semantics and phenomenology. Questions such as a possible phenomenological understanding of the relationship between structural rules and particle rules in dialogical logic are explored. Significant aspects of both phenomenology and dialectics, and dialectics and constructivism emerge. Graduates and researchers of philosophy, especially logic, as well as scholars of mathematics will all find something of interest in the expert insights presented in this volume.
This book covers applications of machine learning in artificial intelligence. The specific topics covered include human language, heterogeneous and streaming data, unmanned systems, neural information processing, marketing and the social sciences, bioinformatics and robotics, etc. It also provides a broad range of techniques that can be successfully applied and adopted in different areas. Accordingly, the book offers an interesting and insightful read for scholars in the areas of computer vision, speech recognition, healthcare, business, marketing, and bioinformatics.
Filtering and system identification are powerful techniques for building models of complex systems. This 2007 book discusses the design of reliable numerical methods to retrieve missing information in models derived using these techniques. Emphasis is on the least squares approach as applied to the linear state-space model, and problems of increasing complexity are analyzed and solved within this framework, starting with the Kalman filter and concluding with the estimation of a full model, noise statistics and state estimator directly from the data. Key background topics, including linear matrix algebra and linear system theory, are covered, followed by different estimation and identification methods in the state-space model. With end-of-chapter exercises, MATLAB simulations and numerous illustrations, this book will appeal to graduate students and researchers in electrical, mechanical and aerospace engineering. It is also useful for practitioners. Additional resources for this title, including solutions for instructors, are available online at www.cambridge.org/9780521875127.
The LNCS journal Transactions on Computational Science reflects recent developments in the field of Computational Science, conceiving the field not as a mere ancillary science but rather as an innovative approach supporting many other scientific disciplines. The journal focuses on original high-quality research in the realm of computational science in parallel and distributed environments, encompassing the facilitating theoretical foundations and the applications of large-scale computations and massive data processing. It addresses researchers and practitioners in areas ranging from aerospace to biochemistry, from electronics to geosciences, from mathematics to software architecture, presenting verifiable computational methods, findings, and solutions, and enabling industrial users to apply techniques of leading-edge, large-scale, high performance computational methods.This, the 38th issue of the Transactions on Computational Science, is devoted to research on modelling, optimization, and graphs, with applications in 3D and sketch modelling, engineering design, evolutionary computing, and networks.
In this book the authors aim to endow the reader with an operational, conceptual, and methodological understanding of the discrete mathematics that can be used to study, understand, and perform computing. They want the reader to understand the elements of computing, rather than just know them. The basic topics are presented in a way that encourages readers to develop their personal way of thinking about mathematics. Many topics are developed at several levels, in a single voice, with sample applications from within the world of computing. Extensive historical and cultural asides emphasize the human side of mathematics and mathematicians. By means of lessons and exercises on "doing" mathematics, the book prepares interested readers to develop new concepts and invent new techniques and technologies that will enhance all aspects of computing. The book will be of value to students, scientists, and engineers engaged in the design and use of computing systems, and to scholars and practitioners beyond these technical fields who want to learn and apply novel computational ideas. |
![]() ![]() You may like...
Expert Oracle Practices - Oracle…
Pete Finnigan, Alex Gorbachev, …
Paperback
R1,601
Discovery Miles 16 010
Machine Learning for Oracle Database…
Heli Helskyaho, Jean Yu, …
Paperback
Enterprise Level Security 2 - Advanced…
Kevin E. Foltz, William R. Simpson, …
Paperback
R1,390
Discovery Miles 13 900
Microsoft Exchange 2000 Infrastructure…
Kieran McCorry, Donald Livengood
Paperback
R1,653
Discovery Miles 16 530
|