![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > General theory of computing > Mathematical theory of computation
Edited in collaboration with FoLLI, the Association of Logic, Language and Information, this book constitutes the refereed proceedings of the 23rd International Conference on Formal Grammar, FG 2018, collocated with the European Summer School in Logic, Language and Information in August 2018. The 7 full papers were carefully reviewed and selected from 11 submissions. The focus of papers are as follows: Formal and computational phonology, morphology, syntax, semantics, and pragmatics Model-theoretic and proof-theoretic methods in linguistics Logical aspects of linguistic structure Constraint-based and resource-sensitive approaches to grammar Learnability of formal grammar Integration of stochastic and symbolic models of grammar Foundational, methodological, and architectural issues in grammar and linguistics Mathematical foundations of statistical approaches to linguistic analysis
This contributed volume offers a collection of papers presented at the 2016 Network Games, Control, and Optimization conference (NETGCOOP), held at the University of Avignon in France, November 23-25, 2016. These papers highlight the increasing importance of network control and optimization in many networking application domains, such as mobile and fixed access networks, computer networks, social networks, transportation networks, and, more recently, electricity grids and biological networks. Covering a wide variety of both theoretical and applied topics in the areas listed above, the authors explore several conceptual and algorithmic tools that are needed for efficient and robust control operation, performance optimization, and better understanding the relationships between entities that may be acting cooperatively or selfishly in uncertain and possibly adversarial environments. As such, this volume will be of interest to applied mathematicians, computer scientists, engineers, and researchers in other related fields.
There have been substantial developments in meshfree methods, particle methods, and generalized finite element methods since the mid 1990s. The growing interest in these methods is in part due to the fact that they offer extremely flexible numerical tools and can be interpreted in a number of ways. For instance, meshfree methods can be viewed as a natural extension of classical finite element and finite difference methods to scattered node configurations with no fixed connectivity. Furthermore, meshfree methods have a number of advantageous features that are especially attractive when dealing with multiscale phenomena: A-priori knowledge about the solution's particular local behavior can easily be introduced into the meshfree approximation space, and coarse scale approximations can be seamlessly refined by adding fine scale information. However, the implementation of meshfree methods and their parallelization also requires special attention, for instance with respect to numerical integration.
This book provides an in-depth study of controlled languages used in technical documents from both a theoretical and practical perspective. It first explores the history of controlled languages employed by the manufacturing industry to shape and constrain the information in technical documents. The author then offers a comparative analysis of existing controlled languages and distills the best-practice features of those language systems. He concludes by offering innovative models that can be used to develop and trial a new controlled language. This book will be of interest to linguists working in technical and professional communication, as well as writers and practitioners involved in the production of technical documents for companies in multiple industries and geographical locations.
This book presents a comprehensive and self-contained treatment of the authors' newly developed scalable algorithms for the solutions of multibody contact problems of linear elasticity. The brand new feature of these algorithms is theoretically supported numerical scalability and parallel scalability demonstrated on problems discretized by billions of degrees of freedom. The theory supports solving multibody frictionless contact problems, contact problems with possibly orthotropic Tresca's friction, and transient contact problems. It covers BEM discretization, jumping coefficients, floating bodies, mortar non-penetration conditions, etc. The exposition is divided into four parts, the first of which reviews appropriate facets of linear algebra, optimization, and analysis. The most important algorithms and optimality results are presented in the third part of the volume. The presentation is complete, including continuous formulation, discretization, decomposition, optimality results, and numerical experiments. The final part includes extensions to contact shape optimization, plasticity, and HPC implementation. Graduate students and researchers in mechanical engineering, computational engineering, and applied mathematics, will find this book of great value and interest.
This book offers an in-depth insight into the general-purpose finite element program MSC Marc, which is distributed by MSC Software Corporation. It is a specialized program for nonlinear problems (implicit solver) which is common in academia and industry. The primary goal of this book is to provide a comprehensive introduction to a special feature of this software: the user can write user-subroutines in the programming language Fortran, which is the language of all classical finite element packages. This subroutine feature allows the user to replace certain modules of the core code and to implement new features such as constitutive laws or new elements. Thus, the functionality of commercial codes ('black box') can easily be extended by linking user written code to the main core of the program. This feature allows to take advantage of a commercial software package with the flexibility of a 'semi-open' code.
Quantum machine learning investigates how quantum computers can be used for data-driven prediction and decision making. The books summarises and conceptualises ideas of this relatively young discipline for an audience of computer scientists and physicists from a graduate level upwards. It aims at providing a starting point for those new to the field, showcasing a toy example of a quantum machine learning algorithm and providing a detailed introduction of the two parent disciplines. For more advanced readers, the book discusses topics such as data encoding into quantum states, quantum algorithms and routines for inference and optimisation, as well as the construction and analysis of genuine ``quantum learning models''. A special focus lies on supervised learning, and applications for near-term quantum devices.
This book explores the most significant computational methods and the history of their development. It begins with the earliest mathematical / numerical achievements made by the Babylonians and the Greeks, followed by the period beginning in the 16th century. For several centuries the main scientific challenge concerned the mechanics of planetary dynamics, and the book describes the basic numerical methods of that time. In turn, at the end of the Second World War scientific computing took a giant step forward with the advent of electronic computers, which greatly accelerated the development of numerical methods. As a result, scientific computing became established as a third scientific method in addition to the two traditional branches: theory and experimentation. The book traces numerical methods' journey back to their origins and to the people who invented them, while also briefly examining the development of electronic computers over the years. Featuring 163 references and more than 100 figures, many of them portraits or photos of key historical figures, the book provides a unique historical perspective on the general field of scientific computing - making it a valuable resource for all students and professionals interested in the history of numerical analysis and computing, and for a broader readership alike.
This book constitutes the proceedings of the 24th International Conference on Computing and Combinatorics, COCOON 2018, held in Qing Dao, China, in July 2018. The 62 papers presented in this volume were carefully reviewed and selected from 120 submissions. They deal with the areas of algorithms, theory of computation, computational complexity, and combinatorics related to computing.
In this book the authors present new results on interpolation for nonmonotonic logics, abstract (function) independence, the Talmudic Kal Vachomer rule, and an equational solution of contrary-to-duty obligations. The chapter on formal construction is the conceptual core of the book, where the authors combine the ideas of several types of nonmonotonic logics and their analysis of 'natural' concepts into a formal logic, a special preferential construction that combines formal clarity with the intuitive advantages of Reiter defaults, defeasible inheritance, theory revision, and epistemic considerations. It is suitable for researchers in the area of computer science and mathematical logic.
This book constitutes the refereed post-conference proceedings of the 29th International Workshop on Combinatorial Algorithms, IWOCA 2018, held in Singapore, Singapore, in July 2018. The 31 regular papers presented in this volume were carefully reviewed and selected from 69 submissions. They cover diverse areas of combinatorical algorithms, complexity theory, graph theory and combinatorics, combinatorial optimization, cryptography and information security, algorithms on strings and graphs, graph drawing and labelling, computational algebra and geometry, computational biology, probabilistic and randomised algorithms, algorithms for big data analytics, and new paradigms of computation.
This graduate textbook provides a unified view of quantum information theory. Clearly explaining the necessary mathematical basis, it merges key topics from both information-theoretic and quantum- mechanical viewpoints and provides lucid explanations of the basic results. Thanks to this unified approach, it makes accessible such advanced topics in quantum communication as quantum teleportation, superdense coding, quantum state transmission (quantum error-correction) and quantum encryption. Since the publication of the preceding book Quantum Information: An Introduction, there have been tremendous strides in the field of quantum information. In particular, the following topics - all of which are addressed here - made seen major advances: quantum state discrimination, quantum channel capacity, bipartite and multipartite entanglement, security analysis on quantum communication, reverse Shannon theorem and uncertainty relation. With regard to the analysis of quantum security, the present book employs an improved method for the evaluation of leaked information and identifies a remarkable relation between quantum security and quantum coherence. Taken together, these two improvements allow a better analysis of quantum state transmission. In addition, various types of the newly discovered uncertainty relation are explained. Presenting a wealth of new developments, the book introduces readers to the latest advances and challenges in quantum information. To aid in understanding, each chapter is accompanied by a set of exercises and solutions.
This textbook helps future data analysts comprehend aggregation function theory and methods in an accessible way, focusing on a fundamental understanding of the data and summarization tools. Offering a broad overview of recent trends in aggregation research, it complements any study in statistical or machine learning techniques. Readers will learn how to program key functions in R without obtaining an extensive programming background. Sections of the textbook cover background information and context, aggregating data with averaging functions, power means, and weighted averages including the Borda count. It explains how to transform data using normalization or scaling and standardization, as well as log, polynomial, and rank transforms. The section on averaging with interaction introduces OWS functions and the Choquet integral, simple functions that allow the handling of non-independent inputs. The final chapters examine software analysis with an emphasis on parameter identification rather than technical aspects. This textbook is designed for students studying computer science or business who are interested in tools for summarizing and interpreting data, without requiring a strong mathematical background. It is also suitable for those working on sophisticated data science techniques who seek a better conception of fundamental data aggregation. Solutions to the practice questions are included in the textbook.
This book constitutes the thoroughly refereed proceedings of the Clausthal-Goettingen International Workshop on Simulation Science, held in Goettingen, Germany, in April 2017. The 16 full papers presented were carefully reviewed and selected from 40 submissions. The papers are organized in topical sections on simulation and optimization in networks, simulation of materials, distributed simulations.
This LNAI 1103 constitutes the proceedings of the International Joint Conference on Rough Sets, IJCRS 2018, held in Quy Nhon, Vietnam, in August 2018.The 40 full papers presented together with 5 short papers were carefully reviewed and selected from 61 submissions. The IJCRS conferences aim at bringing together experts from universities and research centers as well as the industry representing fields of research in which theoretical and applicational aspects of rough set theory already find or may potentially find usage.
The European Conference on Numerical Mathematics and Advanced Applications (ENUMATH), held every 2 years, provides a forum for discussing recent advances in and aspects of numerical mathematics and scientific and industrial applications. The previous ENUMATH meetings took place in Paris (1995), Heidelberg (1997), Jyvaskyla (1999), Ischia (2001), Prague (2003), Santiago de Compostela (2005), Graz (2007), Uppsala (2009), Leicester (2011) and Lausanne (2013). This book presents a selection of invited and contributed lectures from the ENUMATH 2015 conference, which was organised by the Institute of Applied Mathematics (IAM), Middle East Technical University, Ankara, Turkey, from September 14 to 18, 2015. It offers an overview of central recent developments in numerical analysis, computational mathematics, and applications in the form of contributions by leading experts in the field.
The papers in this volume represent a broad, applied swath of advanced contributions to the 2015 ICSA/Graybill Applied Statistics Symposium of the International Chinese Statistical Association, held at Colorado State University in Fort Collins. The contributions cover topics that range from statistical applications in business and finance to applications in clinical trials and biomarker analysis. Each papers was peer-reviewed by at least two referees and also by an editor. The conference was attended by over 400 participants from academia, industry, and government agencies around the world, including from North America, Asia, and Europe.
This self-contained essay collection is published to commemorate half a century of Bell's theorem. Like its much acclaimed predecessor "Quantum [Un]Speakables: From Bell to Quantum Information" (published 2002), it comprises essays by many of the worlds leading quantum physicists and philosophers. These revisit the foundations of quantum theory as well as elucidating the remarkable progress in quantum technologies achieved in the last couple of decades. Fundamental concepts such as entanglement, nonlocality and contextuality are described in an accessible manner and, alongside lively descriptions of the various theoretical and experimental approaches, the book also delivers interesting philosophical insights. The collection as a whole will serve as a broad introduction for students and newcomers as well as delighting the scientifically literate general reader.
This book constitutes the thoroughly refereed post-conference proceedings of the Satellite Events of the 15th Extended Semantic Web Conference, ESWC 2018, held in Heraklion, Crete, Greece, in June 2018.The volume contains 41 poster and demonstration papers, 11 invited workshop papers, and 9 full papers, selected out of a total of 70 submissions. They deal with all areas of semantic web research, semantic technologies on the Web and Linked Data.
This book constitutes the proceedings of the 17th International Conference on Information Technologies and Mathematical Modelling, ITMM 2018, named after A.F. Terpugov, and the 12th Workshop on Retrial Queues and Related Topics, held in Tomsk, Russia, in September 2018. The 30 papers presented in this volume were carefully reviewed and selected from 84 submissions. The conference covers various aspects of information technologies, focusing on queueing theory, stochastic processes, Markov processes, renewal theory, network performance equation and network protocols.
This book addresses the basics of interval/fuzzy set theory, artificial neural networks (ANN) and computational methods. It presents step-by-step modeling for application problems along with simulation and numerical solutions. In general, every science and engineering problem is inherently biased by uncertainty, and there is often a need to model, solve and interpret problems in the world of uncertainty. At the same time, exact information about models and parameters of practical applications is usually not known and precise values do not exist. This book discusses uncertainty in both data and models. It consists of seven chapters covering various aspects of fuzzy uncertainty in application problems, such as shallow water wave equations, static structural problems, robotics, radon diffusion in soil, risk of invasive alien species and air quality quantification. These problems are handled by means of advanced computational and fuzzy theory along with machine intelligence when the uncertainties involved are fuzzy. The proposed computational methods offer new fuzzy computing methods that help other areas of knowledge construction where inexact information is present.
This book constitutes the refereed proceedings of the 7h Language and Technology Conference: Challenges for Computer Science and Linguistics, LTC 2015, held in Poznan, Poland, in November 2015. The 31 revised papers presented in this volume were carefully reviewed and selected from 108 submissions. The papers selected to this volume belong to various fields of: Speech Processing; Multiword Expressions; Parsing; Language Resources and Tools; Ontologies and Wordnets; Machine Translation; Information and Data Extraction; Text Engineering and Processing; Applications in Language Learning; Emotions, Decisions and Opinions; Less-Resourced Languages.
This book constitutes extended, revised and selected papers from the 7th International Conference on Optimization Problems and Their Applications, OPTA 2018, held in Omsk, Russia in July 2018. The 27 papers presented in this volume were carefully reviewed and selected from a total of 73 submissions. The papers are listed in thematic sections, namely location problems, scheduling and routing problems, optimization problems in data analysis, mathematical programming, game theory and economical applications, applied optimization problems and metaheuristics.
This book is a comprehensive, unifying introduction to the field of mathematical analysis and the mathematics of computing. It develops the relevant theory at a modern level and it directly relates modern mathematical ideas to their diverse applications. The authors develop the whole theory. Starting with a simple axiom system for the real numbers, they then lay the foundations, developing the theory, exemplifying where it's applicable, in turn motivating further development of the theory. They progress from sets, structures, and numbers to metric spaces, continuous functions in metric spaces, linear normed spaces and linear mappings; and then differential calculus and its applications, the integral calculus, the gamma function, and linear integral operators. They then present important aspects of approximation theory, including numerical integration. The remaining parts of the book are devoted to ordinary differential equations, the discretization of operator equations, and numerical solutions of ordinary differential equations. This textbook contains many exercises of varying degrees of difficulty, suitable for self-study, and at the end of each chapter the authors present more advanced problems that shed light on interesting features, suitable for classroom seminars or study groups. It will be valuable for undergraduate and graduate students in mathematics, computer science, and related fields such as engineering. This is a rich field that has experienced enormous development in recent decades, and the book will also act as a reference for graduate students and practitioners who require a deeper understanding of the methodologies, techniques, and foundations.
This book constitutes the refereed proceedings of the 25th International Symposium on Model Checking Software, SPIN 2018, held in Malaga, Spain, in June 2018.The 14 papers presented, 1 short paper, and 1 demo-tool paper, were carefully reviewed and selected from 28 submissions. Topics covered include formal verification techniques for automated analysis of software; formal analysis for modeling languages, such as UML/state charts; formal specification languages, temporal logic, design-by-contract; model checking, automated theorem proving, including SAT and SMT; verifying compilers; abstraction and symbolic execution techniques; and much more. |
![]() ![]() You may like...
|