![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > General theory of computing > Mathematical theory of computation
This textbook on practical data analytics unites fundamental principles, algorithms, and data. Algorithms are the keystone of data analytics and the focal point of this textbook. Clear and intuitive explanations of the mathematical and statistical foundations make the algorithms transparent. But practical data analytics requires more than just the foundations. Problems and data are enormously variable and only the most elementary of algorithms can be used without modification. Programming fluency and experience with real and challenging data is indispensable and so the reader is immersed in Python and R and real data analysis. By the end of the book, the reader will have gained the ability to adapt algorithms to new problems and carry out innovative analyses. This book has three parts:(a) Data Reduction: Begins with the concepts of data reduction, data maps, and information extraction. The second chapter introduces associative statistics, the mathematical foundation of scalable algorithms and distributed computing. Practical aspects of distributed computing is the subject of the Hadoop and MapReduce chapter.(b) Extracting Information from Data: Linear regression and data visualization are the principal topics of Part II. The authors dedicate a chapter to the critical domain of Healthcare Analytics for an extended example of practical data analytics. The algorithms and analytics will be of much interest to practitioners interested in utilizing the large and unwieldly data sets of the Centers for Disease Control and Prevention's Behavioral Risk Factor Surveillance System.(c) Predictive Analytics Two foundational and widely used algorithms, k-nearest neighbors and naive Bayes, are developed in detail. A chapter is dedicated to forecasting. The last chapter focuses on streaming data and uses publicly accessible data streams originating from the Twitter API and the NASDAQ stock market in the tutorials. This book is intended for a one- or two-semester course in data analytics for upper-division undergraduate and graduate students in mathematics, statistics, and computer science. The prerequisites are kept low, and students with one or two courses in probability or statistics, an exposure to vectors and matrices, and a programming course will have no difficulty. The core material of every chapter is accessible to all with these prerequisites. The chapters often expand at the close with innovations of interest to practitioners of data science. Each chapter includes exercises of varying levels of difficulty. The text is eminently suitable for self-study and an exceptional resource for practitioners.
This LNCS volume is part of FoLLI book serie and contains the papers presented at the 6th International Workshop on Logic, Rationality and Interaction/ (LORI-VI), held in September 2017 in Sapporo, Japan. The focus of the workshop is on following topics: Agency, Argumentation and Agreement, Belief Revision and Belief Merging, Belief Representation, Cooperation, Decision making and Planning, Natural Language, Philosophy and Philosophical Logic, and Strategic Reasoning.
This book uses a variety of applications to illustrate a modeling method that helps practitioners to manage complex software-intensive systems. The proposed method relies on the combination of its abstraction concept and its operational character, with behavioral models in the precise and simple form of Abstract State Machines (ASMs). The book introduces both the modeling method (Part I) and the available tool support (Part II): In Part I the authors detail (using numerous examples) how to construct, explain, debug, explore, extend and reuse accurate system design models, starting from scratch. Only an elementary knowledge of common mathematical (including set-theoretic) notation and some basic experience with computational processes (systems, programs, algorithms) is assumed. Part II then shows how the modeling method can be supported by implementing tools that make design models executable and debuggable. To illustrate how to build, debug and maintain systems and to explain their construction in a checkable manner, a general, problem-oriented refinement method is adopted to construct system models from components. The method starts with abstract models and refines them step by step, incrementally adding further details that eventually lead to code. Intended for practitioners who build software intensive systems, and students specializing in software engineering, it can be used both for self-study and for teaching, and it can serve as a reference book. Exercises are included to help readers check their understanding of the explained concepts. For many models defined in the book, refinements to executable versions can be downloaded for experimental validation from the book's website at http://modelingbook.informatik.uni-ulm.de
The three-volume set LNCS 10860, 10861 + 10862 constitutes the proceedings of the 18th International Conference on Computational Science, ICCS 2018, held in Wuxi, China, in June 2018. The total of 155 full and 66 short papers presented in this book set was carefully reviewed and selected from 404 submissions. The papers were organized in topical sections named: Part I: ICCS Main Track Part II: Track of Advances in High-Performance Computational Earth Sciences: Applications and Frameworks; Track of Agent-Based Simulations, Adaptive Algorithms and Solvers; Track of Applications of Matrix Methods in Artificial Intelligence and Machine Learning; Track of Architecture, Languages, Compilation and Hardware Support for Emerging ManYcore Systems; Track of Biomedical and Bioinformatics Challenges for Computer Science; Track of Computational Finance and Business Intelligence; Track of Computational Optimization, Modelling and Simulation; Track of Data, Modeling, and Computation in IoT and Smart Systems; Track of Data-Driven Computational Sciences; Track of Mathematical-Methods-and-Algorithms for Extreme Scale; Track of Multiscale Modelling and Simulation Part III: Track of Simulations of Flow and Transport: Modeling, Algorithms and Computation; Track of Solving Problems with Uncertainties; Track of Teaching Computational Science; Poster Papers
This book constitutes the thoroughly refereed proceedings of the 15th International Conference on Image Analysis and Recognition, ICIAR 2018, held in Povoa de Varzim, Portugal, in June 2018. The 91 full papers presented together with 15 short papers were carefully reviewed and selected from 179 submissions. The papers are organized in the following topical sections: Enhancement, Restoration and Reconstruction, Image Segmentation, Detection, Classication and Recognition, Indexing and Retrieval, Computer Vision, Activity Recognition, Traffic and Surveillance, Applications, Biomedical Image Analysis, Diagnosis and Screening of Ophthalmic Diseases, and Challenge on Breast Cancer Histology Images.
This book constitutes the proceedings of the 15th International Conference on Integration of Artificial Intelligence and Operations Research Techniques in Constraint Programming for Combinatorial Optimization Problems, CPAIOR 2018, held in Delft, The Netherlands, in June 2018. The 47 full papers presented together with 3 abstracts of invited talks and 3 abstracts of fast-track journal papers were carefully reviewed and selected from 111 submissions. The conference brings together interested researchers from constraint programming, artificial intelligence, and operations research to present new techniques or applications in the intersection of these fields and provides an opportunity for researchers in one area to learn about techniques in the others, and to show how the integration of techniques from different fields can lead to interesting results on large and complex problems.
This book contains a selection of the best papers that were presented at the 28th edition of the annual Benelux Conference on Artificial Intelligence, BNAIC 2016. The conference took place on November 10-11, 2016, in Hotel Casa 400 in Amsterdam. The conference was jointly organized by the University of Amsterdam and the Vrije Universiteit Amsterdam, under the auspices of the Benelux Association for Artificial Intelligence (BNVKI) and the Dutch Research School for Information and Knowledge Systems (SIKS). The objective of BNAIC is to promote and disseminate recent research developments in Artificial Intelligence, particularly within Belgium, Luxembourg and the Netherlands, although it does not exclude contributions from countries outside the Benelux. The 13 contributions presented in this volume (8 regular papers, 4 student papers, and 1 demonstration paper) were carefully reviewed and selected from 93 submissions. They address various aspects of artificial intelligence such as natural language processing, agent technology, game theory, problem solving, machine learning, human-agent interaction, AI & education, and data analysis.
This book constitutes the refereed proceedings of the 7h Language and Technology Conference: Challenges for Computer Science and Linguistics, LTC 2015, held in Poznan, Poland, in November 2015. The 31 revised papers presented in this volume were carefully reviewed and selected from 108 submissions. The papers selected to this volume belong to various fields of: Speech Processing; Multiword Expressions; Parsing; Language Resources and Tools; Ontologies and Wordnets; Machine Translation; Information and Data Extraction; Text Engineering and Processing; Applications in Language Learning; Emotions, Decisions and Opinions; Less-Resourced Languages.
This book is a pedagogical presentation aimed at advanced undergraduate students, beginning graduate students and professionals who are looking for an introductory text to the field of Distance Geometry, and some of its applications. This versions profits from feedback acquired at undergraduate/graduate courses in seminars and a number of workshops.
This book constitutes the proceedings of the 4th International Conference on Mathematics and Computing, ICMC 2018, held in Varanasi, India, in January 2018. The 29 papers presented in this volume were carefully reviewed and selected from 116 submissions. They are organized in topical sections on security and coding theory; computing; applied mathematics; pure mathematics.
This graduate textbook provides a unified view of quantum information theory. Clearly explaining the necessary mathematical basis, it merges key topics from both information-theoretic and quantum- mechanical viewpoints and provides lucid explanations of the basic results. Thanks to this unified approach, it makes accessible such advanced topics in quantum communication as quantum teleportation, superdense coding, quantum state transmission (quantum error-correction) and quantum encryption. Since the publication of the preceding book Quantum Information: An Introduction, there have been tremendous strides in the field of quantum information. In particular, the following topics - all of which are addressed here - made seen major advances: quantum state discrimination, quantum channel capacity, bipartite and multipartite entanglement, security analysis on quantum communication, reverse Shannon theorem and uncertainty relation. With regard to the analysis of quantum security, the present book employs an improved method for the evaluation of leaked information and identifies a remarkable relation between quantum security and quantum coherence. Taken together, these two improvements allow a better analysis of quantum state transmission. In addition, various types of the newly discovered uncertainty relation are explained. Presenting a wealth of new developments, the book introduces readers to the latest advances and challenges in quantum information. To aid in understanding, each chapter is accompanied by a set of exercises and solutions.
This book is the first one addressing quantum information from the viewpoint of group symmetry. Quantum systems have a group symmetrical structure. This structure enables to handle systematically quantum information processing. However, there is no other textbook focusing on group symmetry for quantum information although there exist many textbooks for group representation. After the mathematical preparation of quantum information, this book discusses quantum entanglement and its quantification by using group symmetry. Group symmetry drastically simplifies the calculation of several entanglement measures although their calculations are usually very difficult to handle. This book treats optimal information processes including quantum state estimation, quantum state cloning, estimation of group action and quantum channel etc. Usually it is very difficult to derive the optimal quantum information processes without asymptotic setting of these topics. However, group symmetry allows to derive these optimal solutions without assuming the asymptotic setting. Next, this book addresses the quantum error correcting code with the symmetric structure of Weyl-Heisenberg groups. This structure leads to understand the quantum error correcting code systematically. Finally, this book focuses on the quantum universal information protocols by using the group SU(d). This topic can be regarded as a quantum version of the Csiszar-Korner's universal coding theory with the type method. The required mathematical knowledge about group representation is summarized in the companion book, Group Representation for Quantum Theory.
Evolutionary Algorithms in Engineering and Computer Science Edited by K. Miettinen, University of Jyvaskyla, Finland M. M. Makela, University of Jyvaskyla, Finland P. Neittaanmaki, University of Jyvaskyla, Finland J. Periaux, Dassault Aviation, France What is Evolutionary Computing? Based on the genetic message encoded in DNA, and digitalized algorithms inspired by the Darwinian framework of evolution by natural selection, Evolutionary Computing is one of the most important information technologies of our times. Evolutionary algorithms encompass all adaptive and computational models of natural evolutionary systems - genetic algorithms, evolution strategies, evolutionary programming and genetic programming. In addition, they work well in the search for global solutions to optimization problems, allowing the production of optimization software that is robust and easy to implement. Furthermore, these algorithms can easily be hybridized with traditional optimization techniques. This book presents state-of-the-art lectures delivered by international academic and industrial experts in the field of evolutionary computing. It bridges artificial intelligence and scientific computing with a particular emphasis on real-life problems encountered in application-oriented sectors, such as aerospace, electronics, telecommunications, energy and economics. This rapidly growing field, with its deep understanding and assesssment of complex problems in current practice, provides an effective, modern engineering tool. This book will therefore be of significant interest and value to all postgraduates, research scientists and practitioners facing complex optimization problems.
Computational algebraic number theory has been attracting broad interest in the last few years due to its potential applications in coding theory and cryptography. For this reason, the Deutsche Mathematiker Vereinigung initiated an introductory graduate seminar on this topic in Dusseldorf. The lectures given there by the author served as the basis for this book which allows fast access to the state of the art in this area. Special emphasis has been placed on practical algorithms - all developed in the last five years - for the computation of integral bases, the unit group and the class group of arbitrary algebraic number fields. Contents: Introduction * Topics from finite fields * Arithmetic and polynomials * Factorization of polynomials * Topics from the geometry of numbers * Hermite normal form * Lattices * Reduction * Enumeration of lattice points * Algebraic number fields * Introduction * Basic Arithmetic * Computation of an integral basis * Integral closure * Round-Two-Method * Round-Four-Method * Computation of the unit group * Dirichlet's unit theorem and a regulator bound * Two methods for computing r independent units * Fundamental unit computation * Computation of the class group * Ideals and class number * A method for computing the class group * Appendix * The number field sieve * KANT * References * Index
This book constitutes the thoroughly refereed workshop post-proceedings of the 15th International Workshop on Approximation and Online Algorithms, WAOA 2017, held in Vienna, Austria, in September 2017 as part of ALGO 2017. The 23 revised full papers presented in this book were carefully reviewed and selected from 50 submissions. Topics of interest for WAOA 2017 were: graph algorithms; inapproximability results; network design; packing and covering; paradigms for the design and analysis of approximation and online algorithms; parameterized complexity; scheduling problems; algorithmic game theory; coloring and partitioning; competitive analysis; computational advertising; computational finance; cuts and connectivity; geometric problems; mechanism design; resource augmentation; and real-world applications.
This book constitutes the proceedings of the second International Conference on Smart Cities, Smart-CT 2017, held in Malaga, Spain, in June 2017. The 16 papers presented in this volume were carefully reviewed and selected from 21 submissions. The topics covered include studies and tools to improve road traffic, energy consumption, logistics, frameworks to provide new services and take decisions in a holistic way, driving assistance, electric vehicles, public transport, and surveys on smart city concepts.
This book constitutes the proceedings of the 38th International Conference on Application and Theory of Petri Nets and Concurrency, PETRI NETS 2017, held in Zaragoza, Spain, in June 2017. Petri Nets 2017 is co-located with the Application of Concurrency to System Design Conference, ACSD 2017. The 16 papers, 9 theory papers, 4 application papers, and 3 tool papers, with 1 short abstract and 3 extended abstracts of invited talks presented together in this volume were carefully reviewed and selected from 33 submissions. The focus of the conference is on following topics: Simulation of Colored Petri Nets, Petri Net Tools.- Model Checking, Liveness and Opacity, Stochastic Petri Nets, Specific Net Classes, and Petri Nets for Pathways.
This volume constitutes the thoroughly refereed proceedings of the 23rd IFIP WG 1.5 International Workshop on Cellular Automata and Discrete Complex Systems, AUTOMATA 2017, held in Milan, Italy, in June 2017. The 14 full papers presented together with one full-length invited paper and 2 invited talk abstracts were carefully reviewed and selected from a total of 28 submissions. The papers feature research on correlated models of automata. The topics include aspects and features of such models: dynamics; topological, ergodic, and algebraic aspects; algorithmic and complexity issues; emergent properties; formal languages; symbolic dynamics; tilings; models of parallelism and distributed systems; timing schemes; synchronous versus asynchronous models; phenomenological descriptions; scientific modelling; practical applications.
This book surveys the mathematical and computational properties of finite sets of points in the plane, covering recent breakthroughs on important problems in discrete geometry, and listing many open problems. It unifies these mathematical and computational views using forbidden configurations, which are patterns that cannot appear in sets with a given property, and explores the implications of this unified view. Written with minimal prerequisites and featuring plenty of figures, this engaging book will be of interest to undergraduate students and researchers in mathematics and computer science. Most topics are introduced with a related puzzle or brain-teaser. The topics range from abstract issues of collinearity, convexity, and general position to more applied areas including robust statistical estimation and network visualization, with connections to related areas of mathematics including number theory, graph theory, and the theory of permutation patterns. Pseudocode is included for many algorithms that compute properties of point sets.
This book constitutes the refereed proceedings of the 5th Computer Games Workshop, CGW 2016, and the 5th Workshop on General Intelligence in Game-Playing Agents, GIGA 2016, held in conjunction with the 25th International Conference on Artificial Intelligence, IJCAI 2016, in New York, USA, in July 2016.The 12 revised full papers presented were carefully reviewed and selected from 25 submissions. The papers address all aspects of artificial intelligence and computer game playing. They discuss topics such as Monte-Carlo methods; heuristic search; board games; card games; video games; perfect and imperfect information games; puzzles and single player games; multi-player games; combinatorial game theory; applications; computational creativity; computational game theory; evaluation and analysis; game design; knowledge representation; machine learning; multi-agent systems; opponent modeling; planning.
Discover the art and science of solving artificial intelligence problems with Python using optimization modeling. This book covers the practical creation and analysis of mathematical algebraic models such as linear continuous models, non-obviously linear continuous models,and pure linear integer models. Rather than focus on theory, Practical Python AI Projects, the product of the author's decades of industry teaching and consulting, stresses the model creation aspect; contrasting alternate approaches and practical variations. Each model is explained thoroughly and written to be executed. The source code from all examples in the book is available, written in Python using Google OR-Tools. It also includes a random problem generator, useful for industry application or study. What You Will Learn Build basic Python-based artificial intelligence (AI) applications Work with mathematical optimization methods and the Google OR-Tools (Optimization Tools) suite Create several types of projects using Python and Google OR-Tools Who This Book Is For Developers and students who already have prior experience in Python coding. Some prior mathematical experience or comfort level may be helpful as well.
Collecting a set of classical and emerging methods that otherwise would not be available in a single treatment, Foundations of Computational Imaging: A Model-Based Approach is the first book to define a common foundation for the mathematical and statistical methods used in computational imaging. The book is designed to bring together an eclectic group of researchers with a wide variety of applications and disciplines including applied math, physics, chemistry, optics, and signal processing, to address a collection of problems that can benefit from a common set of methods. Inside, readers will find: Basic techniques of model-based image processing. A comprehensive treatment of Bayesian and regularized image reconstruction methods. An integrated treatment of advanced reconstruction techniques such as majorization, constrained optimization, ADMM, and Plug-and-Play methods for model integration. Foundations of Computational Imaging can be used in courses on Model-Based or Computational Imaging, Advanced Numerical Analysis, Special Topics on Numerical Analysis, Topics on Data Science, Topics on Numerical Optimization, and Topics on Approximation Theory. It is also for researchers or practitioners in medical imaging, scientific imaging, commercial imaging, or industrial imaging.
This book constitutes the thoroughly refereed proceedings of the 24th International Conference on Computer Networks, CN 2017, held in Brunow, Poland, in June 2017. The 35 full papers presented were carefully reviewed and selected from 80 submissions. They are dealing with the topics computer networks; teleinformatics and telecommunications; new technologies; queueing theory; innovative applications.
This book constitutes the refereed proceedings of the 22nd International Conference on Implementation and Application of Automata, CIAA 2017,held in Marne-la-Vallee, France, in June 2017. The 17 revised full papers presented were carefully reviewed and selected from 31 submissions. The topics of the presented papers include state complexity of automata; implementations of automata and experiments; enhanced regular expressions; and complexity analysis.
This book presents the first comprehensive overview of various verifiable computing techniques, which allow the computation of a function on outsourced data to be delegated to a server. It provides a brief description of all the approaches and highlights the properties each solution achieves. Further, it analyzes the level of security provided, how efficient the verification process is, who can act as a verifier and check the correctness of the result, which function class the verifiable computing scheme supports, and whether privacy with respect to t he input and/or output data is provided. On the basis of this analysis the authors then compare the different approaches and outline possible directions for future work. The book is of interest to anyone wanting to understand the state of the art of this research field. |
![]() ![]() You may like...
Heritage Language Program Direction…
Sara M. Beaudrie, Sergio Loza
Paperback
R1,259
Discovery Miles 12 590
Knowledge Intensive CAD - Volume 2…
Martti Mantyla, Susan Finger, …
Hardcover
R3,052
Discovery Miles 30 520
Oracle Application Express by Design…
Patrick Cimolini
Paperback
Taboos and Controversial Issues in…
Christian Ludwig, Theresa Summer
Hardcover
R3,869
Discovery Miles 38 690
Dynamics in Microwave Chemistry
Kama Huang, Xiaoqing Yang, …
Hardcover
R3,365
Discovery Miles 33 650
Expert Oracle Indexing and Access Paths…
Darl Kuhn, Sam R. Alapati, …
Paperback
R3,090
Discovery Miles 30 900
|