![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > General theory of computing > Mathematical theory of computation
This book describes the relation between profinite semigroups and symbolic dynamics. Profinite semigroups are topological semigroups which are compact and residually finite. In particular, free profinite semigroups can be seen as the completion of free semigroups with respect to the profinite metric. In this metric, two words are close if one needs a morphism on a large finite monoid to distinguish them. The main focus is on a natural correspondence between minimal shift spaces (closed shift-invariant sets of two-sided infinite words) and maximal J-classes (certain subsets of free profinite semigroups). This correspondence sheds light on many aspects of both profinite semigroups and symbolic dynamics. For example, the return words to a given word in a shift space can be related to the generators of the group of the corresponding J-class. The book is aimed at researchers and graduate students in mathematics or theoretical computer science.
This book constitutes the proceedings of the 26th International Conference on Principles and Practice of Constraint Programming, CP 2020, held in Louvain-la-Neuve, Belgium, in September 2020. The conference was held virtually due to the COVID-19 pandemic. The 55 full papers presented in this volume were carefully reviewed and selected from 122 submissions. They deal with all aspects of computing with constraints including theory, algorithms, environments, languages, models, systems, and applications such as decision making, resource allocation, scheduling, configuration, and planning. The papers were organized according to the following topics/tracks: technical track; application track; and CP and data science and machine learning.
This two-volume set LNCS 12269 and LNCS 12270 constitutes the refereed proceedings of the 16th International Conference on Parallel Problem Solving from Nature, PPSN 2020, held in Leiden, The Netherlands, in September 2020. The 99 revised full papers were carefully reviewed and selected from 268 submissions. The topics cover classical subjects such as automated algorithm selection and configuration; Bayesian- and surrogate-assisted optimization; benchmarking and performance measures; combinatorial optimization; connection between nature-inspired optimization and artificial intelligence; genetic and evolutionary algorithms; genetic programming; landscape analysis; multiobjective optimization; real-world applications; reinforcement learning; and theoretical aspects of nature-inspired optimization.
Quantum Computing: From Alice to Bob provides a distinctive and accessible introduction to the rapidly growing fields of quantum information science and quantum computing. The textbook is designed for undergraduate students and upper-level secondary school students with little or no background in physics, computer science, or mathematics beyond secondary school algebra and a bit of trigonometry. Higher education faculty members and secondary school mathematics, physics, and computer science educators who want to learn about quantum computing and perhaps teach a course accessible to students with wide-ranging backgrounds will also find the book useful and enjoyable. While broadly accessible, the textbook also provides a solid conceptual and formal understanding of quantum states and entanglement - the key ingredients in quantum computing. The authors dish up a hearty meal for the readers, disentangling and explaining many of the classic quantum algorithms that demonstrate how and when QC has an advantage over classical computers. The book is spiced with Try Its, brief exercises that engage the readers in problem solving (both with and without mathematics) and help them digest the many counter-intuitive quantum information science and quantum computing concepts.
This two-volume set constitutes the refereed proceedings of the 16th International Conference on Collaborative Computing: Networking, Applications, and Worksharing, CollaborateCom 2020, held in Shanghai, China, in October 2020.The 61 full papers and 16 short papers presented were carefully reviewed and selected from 211 submissions. The papers reflect the conference sessions as follows: Collaborative Applications for Network and E-Commerce; Optimization for Collaborate System; Cloud and Edge Computing; Artificial Intelligence; AI Application and Optimization; Classification and Recommendation; Internet of Things; Collaborative Robotics and Autonomous Systems; Smart Transportation.
The seven-volume set LNCS 12137, 12138, 12139, 12140, 12141, 12142, and 12143 constitutes the proceedings of the 20th International Conference on Computational Science, ICCS 2020, held in Amsterdam, The Netherlands, in June 2020.* The total of 101 papers and 248 workshop papers presented in this book set were carefully reviewed and selected from 719 submissions (230 submissions to the main track and 489 submissions to the workshops). The papers were organized in topical sections named: Part I: ICCS Main Track Part II: ICCS Main Track Part III: Advances in High-Performance Computational Earth Sciences: Applications and Frameworks; Agent-Based Simulations, Adaptive Algorithms and Solvers; Applications of Computational Methods in Artificial Intelligence and Machine Learning; Biomedical and Bioinformatics Challenges for Computer Science Part IV: Classifier Learning from Difficult Data; Complex Social Systems through the Lens of Computational Science; Computational Health; Computational Methods for Emerging Problems in (Dis-)Information Analysis Part V: Computational Optimization, Modelling and Simulation; Computational Science in IoT and Smart Systems; Computer Graphics, Image Processing and Artificial Intelligence Part VI: Data Driven Computational Sciences; Machine Learning and Data Assimilation for Dynamical Systems; Meshfree Methods in Computational Sciences; Multiscale Modelling and Simulation; Quantum Computing Workshop Part VII: Simulations of Flow and Transport: Modeling, Algorithms and Computation; Smart Systems: Bringing Together Computer Vision, Sensor Networks and Machine Learning; Software Engineering for Computational Science; Solving Problems with Uncertainties; Teaching Computational Science; UNcErtainty QUantIficatiOn for ComputationAl modeLs *The conference was canceled due to the COVID-19 pandemic.
This book constitutes the thoroughly refereed proceedings of the themed workshops of the 6th International Conference on Life System Modeling and Simulation, LSMS 2020, and of the 6th International Conference on Intelligent Computing for Sustainable Energy and Environment, ICSEE 2020, held in Hangzhou, China, in October 2020.The 36 full and 2 short papers presented were carefully reviewed and selected from over 165 submissions. The papers of this volume are organized in topical sections on: smart energy systems and devices; intelligent manufacturing and systems; and intelligent biology and information systems.
This three volume set (CCIS 1237-1239) constitutes the proceedings of the 18th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2020, in June 2020. The conference was scheduled to take place in Lisbon, Portugal, at University of Lisbon, but due to COVID-19 pandemic it was held virtually. The 173 papers were carefully reviewed and selected from 213 submissions. The papers are organized in topical sections: homage to Enrique Ruspini; invited talks; foundations and mathematics; decision making, preferences and votes; optimization and uncertainty; games; real world applications; knowledge processing and creation; machine learning I; machine learning II; XAI; image processing; temporal data processing; text analysis and processing; fuzzy interval analysis; theoretical and applied aspects of imprecise probabilities; similarities in artificial intelligence; belief function theory and its applications; aggregation: theory and practice; aggregation: pre-aggregation functions and other generalizations of monotonicity; aggregation: aggregation of different data structures; fuzzy methods in data mining and knowledge discovery; computational intelligence for logistics and transportation problems; fuzzy implication functions; soft methods in statistics and data analysis; image understanding and explainable AI; fuzzy and generalized quantifier theory; mathematical methods towards dealing with uncertainty in applied sciences; statistical image processing and analysis, with applications in neuroimaging; interval uncertainty; discrete models and computational intelligence; current techniques to model, process and describe time series; mathematical fuzzy logic and graded reasoning models; formal concept analysis, rough sets, general operators and related topics; computational intelligence methods in information modelling, representation and processing.
This three volume set (CCIS 1237-1239) constitutes the proceedings of the 18th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2020, in June 2020. The conference was scheduled to take place in Lisbon, Portugal, at University of Lisbon, but due to COVID-19 pandemic it was held virtually. The 173 papers were carefully reviewed and selected from 213 submissions. The papers are organized in topical sections: homage to Enrique Ruspini; invited talks; foundations and mathematics; decision making, preferences and votes; optimization and uncertainty; games; real world applications; knowledge processing and creation; machine learning I; machine learning II; XAI; image processing; temporal data processing; text analysis and processing; fuzzy interval analysis; theoretical and applied aspects of imprecise probabilities; similarities in artificial intelligence; belief function theory and its applications; aggregation: theory and practice; aggregation: pre-aggregation functions and other generalizations of monotonicity; aggregation: aggregation of different data structures; fuzzy methods in data mining and knowledge discovery; computational intelligence for logistics and transportation problems; fuzzy implication functions; soft methods in statistics and data analysis; image understanding and explainable AI; fuzzy and generalized quantifier theory; mathematical methods towards dealing with uncertainty in applied sciences; statistical image processing and analysis, with applications in neuroimaging; interval uncertainty; discrete models and computational intelligence; current techniques to model, process and describe time series; mathematical fuzzy logic and graded reasoning models; formal concept analysis, rough sets, general operators and related topics; computational intelligence methods in information modelling, representation and processing.
This three volume set (CCIS 1237-1239) constitutes the proceedings of the 18th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2020, in June 2020. The conference was scheduled to take place in Lisbon, Portugal, at University of Lisbon, but due to COVID-19 pandemic it was held virtually. The 173 papers were carefully reviewed and selected from 213 submissions. The papers are organized in topical sections: homage to Enrique Ruspini; invited talks; foundations and mathematics; decision making, preferences and votes; optimization and uncertainty; games; real world applications; knowledge processing and creation; machine learning I; machine learning II; XAI; image processing; temporal data processing; text analysis and processing; fuzzy interval analysis; theoretical and applied aspects of imprecise probabilities; similarities in artificial intelligence; belief function theory and its applications; aggregation: theory and practice; aggregation: pre-aggregation functions and other generalizations of monotonicity; aggregation: aggregation of different data structures; fuzzy methods in data mining and knowledge discovery; computational intelligence for logistics and transportation problems; fuzzy implication functions; soft methods in statistics and data analysis; image understanding and explainable AI; fuzzy and generalized quantifier theory; mathematical methods towards dealing with uncertainty in applied sciences; statistical image processing and analysis, with applications in neuroimaging; interval uncertainty; discrete models and computational intelligence; current techniques to model, process and describe time series; mathematical fuzzy logic and graded reasoning models; formal concept analysis, rough sets, general operators and related topics; computational intelligence methods in information modelling, representation and processing.
This volume gathers selected papers presented at the Fourth Asian Workshop on Philosophical Logic, held in Beijing in October 2018. The contributions cover a wide variety of topics in modal logic (epistemic logic, temporal logic and dynamic logic), proof theory, algebraic logic, game logics, and philosophical foundations of logic. They also reflect the interdisciplinary nature of logic - a subject that has been studied in fields as diverse as philosophy, linguistics, mathematics, computer science and artificial intelligence. More specifically. The book also presents the latest developments in logic both in Asia and beyond.
This is the proceedings of the Sixth Workshop on Computing: Theory and Practice, WCTP 2016 devoted to theoretical and practical approaches to computation. This workshop was organized by four top universities in Japan and the Philippines: Tokyo Institute of Technology, Osaka University, University of the Philippines - Diliman, and De La Salle University. The proceedings provides a view of the current movement in research in these two countries. The papers included in the proceedings focus on the two research areas: theoretical and practical aspects of computation.
Discrete probability theory and the theory of algorithms have become close partners over the last ten years, though the roots of this partnership go back much longer. The papers in this volume address the latest developments in this active field. They are from the IMA Workshops "Probability and Algorithms" and "The Finite Markov Chain Renaissance." They represent the current thinking of many of the world's leading experts in the field. Researchers and graduate students in probability, computer science, combinatorics, and optimization theory will all be interested in this collection of articles. The techniques developed and surveyed in this volume are still undergoing rapid development, and many of the articles of the collection offer an expositionally pleasant entree into a research area of growing importance.
This book constitutes the thoroughly refereed proceedings of the 11th International Symposium on Intelligence Computation and Applications, ISICA 2019, held in Guangzhou, China, in November 2019. The 65 papers presented were carefully reviewed and selected from the total of 112 submissions. This volume features the most up-to-date research in evolutionary algorithms, parallel computing and quantum computing, evolutionary multi-objective and dynamic optimization, intelligent multimedia systems, virtualization and AI applications, smart scheduling, intelligent control, big data and cloud computing, deep learning, and hybrid machine learning systems.The papers are organized according to the following topical sections: new frontier in evolutionary algorithms; evolutionary multi-objective and dynamic optimization; intelligent multimedia systems; virtualization and AI applications; smart scheduling; intelligent control; big data and cloud computing; statistical learning.
Complex networks are typically not homogeneous, as they tend to display an array of structures at different scales. A feature that has attracted a lot of research is their modular organisation, i.e., networks may often be considered as being composed of certain building blocks, or modules. In this Element, the authors discuss a number of ways in which this idea of modularity can be conceptualised, focusing specifically on the interplay between modular network structure and dynamics taking place on a network. They discuss, in particular, how modular structure and symmetries may impact on network dynamics and, vice versa, how observations of such dynamics may be used to infer the modular structure. They also revisit several other notions of modularity that have been proposed for complex networks and show how these can be related to and interpreted from the point of view of dynamical processes on networks.
The 2017 PIMS-CRM Summer School in Probability was held at the Pacific Institute for the Mathematical Sciences (PIMS) at the University of British Columbia in Vancouver, Canada, during June 5-30, 2017. It had 125 participants from 20 different countries, and featured two main courses, three mini-courses, and twenty-nine lectures. The lecture notes contained in this volume provide introductory accounts of three of the most active and fascinating areas of research in modern probability theory, especially designed for graduate students entering research: Scaling limits of random trees and random graphs (Christina Goldschmidt) Lectures on the Ising and Potts models on the hypercubic lattice (Hugo Duminil-Copin) Extrema of the two-dimensional discrete Gaussian free field (Marek Biskup) Each of these contributions provides a thorough introduction that will be of value to beginners and experts alike.
This book presents selected peer-reviewed contributions from the International Conference on Time Series and Forecasting, ITISE 2018, held in Granada, Spain, on September 19-21, 2018. The first three parts of the book focus on the theory of time series analysis and forecasting, and discuss statistical methods, modern computational intelligence methodologies, econometric models, financial forecasting, and risk analysis. In turn, the last three parts are dedicated to applied topics and include papers on time series analysis in the earth sciences, energy time series forecasting, and time series analysis and prediction in other real-world problems. The book offers readers valuable insights into the different aspects of time series analysis and forecasting, allowing them to benefit both from its sophisticated and powerful theory, and from its practical applications, which address real-world problems in a range of disciplines. The ITISE conference series provides a valuable forum for scientists, engineers, educators and students to discuss the latest advances and implementations in the field of time series analysis and forecasting. It focuses on interdisciplinary and multidisciplinary research encompassing computer science, mathematics, statistics and econometrics.
This two-volume set (CCIS 1159 and CCIS 1160) constitutes the proceedings of the 14th International Conference on Bio-inspired Computing: Theories and Applications, BIC-TA 2019, held in Zhengzhou, China, in November 2019.The 122 full papers presented in both volumes were selected from 197 submissions. The papers in the two volumes are organized according to the topical headings: evolutionary computation and swarm intelligence; bioinformatics and systems biology; complex networks; DNA and molecular computing; neural networks and articial intelligence.
This two-volume set (CCIS 1159 and CCIS 1160) constitutes the proceedings of the 14th International Conference on Bio-inspired Computing: Theories and Applications, BIC-TA 2019, held in Zhengzhou, China, in November 2019. The 121 full papers presented in both volumes were selected from 197 submissions. The papers are organized according to the topical headings: evolutionary computation and swarm intelligence; bioinformatics and systems biology; complex networks; DNA and molecular computing; neural networks and articial intelligence.
This book constitutes the refereed proceedings of the 23rd International Conference on Distributed and Computer and Communication Networks, DCCN 2020, held in Moscow, Russia, in September 2020. Due to the COVID-19 pandemic the conference was held online. The 43 papers were carefully reviewed and selected from 167 submissions.The papers are organized in the following topical sections: computer and communication networks and technologies; analytical modeling of distributed systems, and distributed systems applications.
Advanced Problem Solving Using Maple (TM): Applied Mathematics, Operations Research, Business Analytics, and Decision Analysis applies the mathematical modeling process by formulating, building, solving, analyzing, and criticizing mathematical models. Scenarios are developed within the scope of the problem-solving process. The text focuses on discrete dynamical systems, optimization techniques, single-variable unconstrained optimization and applied problems, and numerical search methods. Additional coverage includes multivariable unconstrained and constrained techniques. Linear algebra techniques to model and solve problems such as the Leontief model, and advanced regression techniques including nonlinear, logistics, and Poisson are covered. Game theory, the Nash equilibrium, and Nash arbitration are also included. Features: The text's case studies and student projects involve students with real-world problem solving Focuses on numerical solution techniques in dynamical systems, optimization, and numerical analysis The numerical procedures discussed in the text are algorithmic and iterative Maple is utilized throughout the text as a tool for computation and analysis All algorithms are provided with step-by-step formats About the Authors: William P. Fox is an emeritus professor in the Department of Defense Analysis at the Naval Postgraduate School. Currently, he is an adjunct professor, Department of Mathematics, the College of William and Mary. He received his PhD at Clemson University and has many publications and scholarly activities including twenty books and over one hundred and fifty journal articles. William C. Bauldry, Prof. Emeritus and Adjunct Research Prof. of Mathematics at Appalachian State University, received his PhD in Approximation Theory from Ohio State. He has published many papers on pedagogy and technology, often using Maple, and has been the PI of several NSF-funded projects incorporating technology and modeling into math courses. He currently serves as Associate Director of COMAP's Math Contest in Modeling (MCM).
Cryptography and encryption aren't just for geeks and spies-they're also part of our daily lives. This book enlightens you with the basics of digital cryptography and covers the must-do practices organizations need to implement when it comes to fending off data theft and eavesdroppers. You will uncover the concepts of digital encryption and examine key digital encryption algorithms and their various applications. Gauging cryptography from an enterprise perspective, you will get an in-depth look at common attacks that can occur in your systems and lean how to counter them Moving on to quantum computing, you will discover how it differs from the current computing paradigm and understand its potential for the future. After clearing the basics, you will take a close look at how quantum computers work in practice. Shifting focus to quantum cryptography, you will learn more about quantum key distribution (QKD) and how it differs from present-day encryption methodologies. You will also consider the current implementations of QKD, including distribution systems by SwissQuantum and QKD-distribution networks provided by the DARPA Quantum Network. Ultimately, you will learn the means of defending against cryptographic attacks in the up-and-coming quantum age, such as utilizing zero-knowledge proof (ZKP) systems. Deepen your knowledge of cryptographic concepts and be introduced to the new paradigm of quantum cryptography with this book. What You Will Learn Appreciate how digital encryption algorithms work Secure your infrastructure from cryptographic attacks Understand the basics of quantum information science Discover how cryptography relates to quantum computing Implement Quantum Key Distribution (QKD) Who This Book Is For This book is aimed at readers who have an interest in both well-established and up-and-coming types of cryptography, as well as members of organizations to whom privacy is a top priority.
Intended for graduate students and advanced undergraduates in computer science, A Second Course in Formal Languages and Automata Theory treats topics in the theory of computation not usually covered in a first course. After a review of basic concepts, the book covers combinatorics on words, regular languages, context-free languages, parsing and recognition, Turing machines, and other language classes. Many topics often absent from other textbooks, such as repetitions in words, state complexity, the interchange lemma, 2DPDAs, and the incompressibility method, are covered here. The author places particular emphasis on the resources needed to represent certain languages. The book also includes a diverse collection of more than 200 exercises, suggestions for term projects, and research problems that remain open.
Your company has committed to AI. Congratulations, now what? This practical book offers a holistic plan for implementing AI from the perspective of IT and IT operations in the enterprise. You will learn about AI's capabilities, potential, limitations, and challenges. This book teaches you about the role of AI in the context of well-established areas, such as design thinking and DevOps, governance and change management, blockchain, and quantum computing, and discusses the convergence of AI in these key areas of the enterprise. Deploying AI in the Enterprise provides guidance and methods to effectively deploy and operationalize sustainable AI solutions. You will learn about deployment challenges, such as AI operationalization issues and roadblocks when it comes to turning insight into actionable predictions. You also will learn how to recognize the key components of AI information architecture, and its role in enabling successful and sustainable AI deployments. And you will come away with an understanding of how to effectively leverage AI to augment usage of core information in Master Data Management (MDM) solutions. What You Will Learn Understand the most important AI concepts, including machine learning and deep learning Follow best practices and methods to successfully deploy and operationalize AI solutions Identify critical components of AI information architecture and the importance of having a plan Integrate AI into existing initiatives within an organization Recognize current limitations of AI, and how this could impact your business Build awareness about important and timely AI research Adjust your mindset to consider AI from a holistic standpoint Get acquainted with AI opportunities that exist in various industries Who This Book Is For IT pros, data scientists, and architects who need to address deployment and operational challenges related to AI and need a comprehensive overview on how AI impacts other business critical areas. It is not an introduction, but is for the reader who is looking for examples on how to leverage data to derive actionable insight and predictions, and needs to understand and factor in the current risks and limitations of AI and what it means in an industry-relevant context.
This unique open access book applies the functional OCaml programming language to numerical or computational weighted data science, engineering, and scientific applications. This book is based on the authors' first-hand experience building and maintaining Owl, an OCaml-based numerical computing library. You'll first learn the various components in a modern numerical computation library. Then, you will learn how these components are designed and built up and how to optimize their performance. After reading and using this book, you'll have the knowledge required to design and build real-world complex systems that effectively leverage the advantages of the OCaml functional programming language. What You Will Learn Optimize core operations based on N-dimensional arrays Design and implement an industry-level algorithmic differentiation module Implement mathematical optimization, regression, and deep neural network functionalities based on algorithmic differentiation Design and optimize a computation graph module, and understand the benefits it brings to the numerical computing library Accommodate the growing number of hardware accelerators (e.g. GPU, TPU) and execution backends (e.g. web browser, unikernel) of numerical computation Use the Zoo system for efficient scripting, code sharing, service deployment, and composition Design and implement a distributed computing engine to work with a numerical computing library, providing convenient APIs and high performance Who This Book Is For Those with prior programming experience, especially with the OCaml programming language, or with scientific computing experience who may be new to OCaml. Most importantly, it is for those who are eager to understand not only how to use something, but also how it is built up. |
![]() ![]() You may like...
Python for Engineers and Scientists…
Rakesh Nayak, Nishu Gupta
Hardcover
R3,101
Discovery Miles 31 010
Urban Planning, Management and…
Jan Fransen, Meine P. van Dijk, …
Hardcover
R3,327
Discovery Miles 33 270
Advanced Linear Modeling - Multivariate…
Ronald Christensen
Hardcover
Sounds and Systems - Studies in…
David Restle, Dietmar Zaefferer
Hardcover
Social Emotions in Nature and Artifact
Jonathan Gratch, Stacy Marsella
Hardcover
R3,682
Discovery Miles 36 820
|