![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics
This is a reproduction of a book published before 1923. This book may have occasional imperfections such as missing or blurred pages, poor pictures, errant marks, etc. that were either part of the original artifact, or were introduced by the scanning process. We believe this work is culturally important, and despite the imperfections, have elected to bring it back into print as part of our continuing commitment to the preservation of printed works worldwide. We appreciate your understanding of the imperfections in the preservation process, and hope you enjoy this valuable book. ++++ The below data was compiled from various identification fields in the bibliographic record of this title. This data is provided as an additional tool in helping to ensure edition identification: ++++ Principia Mathematica, Volume 2; Principia Mathematica; Bertrand Russell Alfred North Whitehead, Bertrand Russell University Press, 1912 Logic, Symbolic and mathematical; Mathematics
This is a reproduction of a book published before 1923. This book may have occasional imperfections such as missing or blurred pages, poor pictures, errant marks, etc. that were either part of the original artifact, or were introduced by the scanning process. We believe this work is culturally important, and despite the imperfections, have elected to bring it back into print as part of our continuing commitment to the preservation of printed works worldwide. We appreciate your understanding of the imperfections in the preservation process, and hope you enjoy this valuable book. ++++ The below data was compiled from various identification fields in the bibliographic record of this title. This data is provided as an additional tool in helping to ensure edition identification: ++++ Principia Mathematica, Volume 2; Principia Mathematica; Bertrand Russell Alfred North Whitehead, Bertrand Russell University Press, 1912 Logic, Symbolic and mathematical; Mathematics
Engineering is mathematics in action. But engineering students do not always see the link between what they learn in mathematics and how this applies to engineering problems. From relatively simple questions, like determining the maximum weight a beam can support to complex projects like mapping out the most efficient electrical flow for a city’s traffic lights, mathematics is essential.
This volume is number five in the 11-volume "Handbook of the
History of Logic." It covers the first 50 years of the development
of mathematical logic in the 20th century, and concentrates on the
achievements of the great names of the period--Russell, Post,
Godel, Tarski, Church, and the like. This was the period in which
mathematical logic gave mature expression to its four main parts:
set theory, model theory, proof theory and recursion theory.
Collectively, this work ranks as one of the greatest achievements
of our intellectual history. Written by leading researchers in the
field, both this volume and the Handbook as a whole are definitive
reference tools for senior undergraduates, graduate students and
researchers in the history of logic, the history of philosophy, and
any discipline, such as mathematics, computer science, and
artificial intelligence, for whom the historical background of his
or her work is a salient consideration.
This book introduces the fundamentals of financial mathematics. It begins with a discussion of simple and compound interest and then establishes the important concepts of effective and equivalent effective interest rates. Subsequent chapters discuss the applications of annuities to practical problems regarding the saving of money and repayment of loans. The notion of using net present value and internal rate of return to distinguish between two different investment opportunities is presented. The concluding chapters of the book take a brief look at the use of differential and integral calculus in financial mathematics. Each chapter includes numerous worked examples that are solved with the aid of a financial calculator where applicable.
New Publication! Based on years of experience and prior publications, the NEW two-volume book, STEM RESEARCH for STUDENTS, is a vital resource for K-12 teachers, higher education faculty, and their students. In Volume One, students acquire the fundamentals and apply them to their investigations: Conduct experiments and refine the design and procedures; Construct data tables and graphs, use descriptive statistics, and make sense of an experiment; Meet a human need by designing, building, and testing a model; Communicate findings through reports and interactions with peers; Apply mathematical concepts to data including ratio and proportional relationships, geometry and measurement, algebra, and statistics. STEM Research for Students, Volume 1, is: Student friendly! Chapters contain investigations with readily available materials, explanations of major concepts, practice sets, and formative assessment tools. Use as a sequence or as individual units of study for specific content. STEM encompassing! For each core experiment, students have multiple options for making connections to various scientific disciplines, engineering, and mathematics. Teacher enhanced! Each chapter contains learning objectives and assessment tools checklists or rubrics. Answers to the practice sets are available on a secure Kendall Hunt web site. Standards aligned! All chapters are aligned with the Next Generation Science Standards, Common Core Standards for Mathematics and Literacy in Science and Technical Subjects, and the International Standards for Technology in Education Standards for Students. Available in print and e-Book formats, STEM Research for Students, Volume 1, may be used: As a supplemental text in upper elementary, middle, and senior high classrooms; As a core text for introductory research courses and STEM research clubs; For pre-service and in-service teachers of science, mathematics, career and technical courses, and gifted students; As a resource for all teachers involved with experiments, engineering designs, mathematical investigations, and competitive STEM projects. The companion volume, STEM Research for Students, Volume 2 enables students to build upon this strong foundation and create effective science experiments, engineering designs, and mathematical investigations.
This brand new series puts learners in charge with an exploratory inquiry-led approach to MYP Mathematics. Each full-colour book and accompanying eBook contains detailed worked examples, reflections, differentiated exercises, and check your knowledge questions to put learning into practice. Clear links to key concepts, related concepts and global contexts in addition to statements of inquiry and inquiry questions for each chapter. ATLs identified throughout. Investigations encourage learners to seek knowledge and develop ATL skills. Written by an international team of highly experienced authors and teachers, and led by Series Editor, Ibrahim Wazir, this new series matches the 2020 Subject Guide.
New Publication! Based on years of experience and prior publications, the NEW two-volume book, STEM RESEARCH for STUDENTS, is a vital resource for K-12 teachers, higher education faculty, and their students. In Volume Two, students build upon a strong foundation to create original STEM projects: Brainstorm ideas for projects; Analyze and address the safety risks involved in a project; Use the library and Web to expand understanding and develop a valid idea; Conduct a group mini-project which involves readily-available materials in the classroom, on a field site, or at a community location. Use algebra to represent patterns and develop mathematical models; Use statistics to detect the significance of relationships; and Communicate project findings through formal papers, visual presentations, and interactions with peers or judges. STEM Research for Students, Volume 2 is: Student friendly! Each chapter is carefully sequenced and contains a variety of formative assessment tools. Key definitions are included in an appendix. Essential foundational knowledge from Volume 1 is clearly referenced. STEM encompassing! Students have multiple opportunities to make connections by applying information from the various chapters to original projects. Teacher enhanced! Each chapter contains learning objectives and assessment tools checklists or rubrics. Answers to the practice sets are available on a secure Kendall Hunt web site. Standards aligned! All chapters are aligned with the Next Generation Science Standards, Common Core Standards for Mathematics and Literacy in Science and Technical Subjects, and the International Standards for Technology in Education Standards for Students. Available in print and e-Book formats, STEM Research for Students, Volume 2, may be used: As a supplemental text in middle school, high school, and introductory college courses; As core text for research classes and STEM clubs where students are ready to engage in group or individual projects: For pre-service and in-service teachers of science, mathematics, career and technical courses, and gifted students; As a resource for all teachers involved with experiments, engineering designs, mathematical investigations, and competitive STEM projects. The companion volume, STEM Research for Students, Volume 1, is a resource for students to acquire or strengthen the foundational knowledge necessary to engage in an original project.
In July 2009, many experts in the mathematical modeling of
biological sciences gathered in Les Houches for a 4-week summer
school on the mechanics and physics of biological systems. The goal
of the school was to present to students and researchers an
integrated view of new trends and challenges in physical and
mathematical aspects of biomechanics. While the scope for such a
topic is very wide, they focused on problems where solid and fluid
mechanics play a central role. The school covered both the general
mathematical theory of mechanical biology in the context of
continuum mechanics but also the specific modeling of particular
systems in the biology of the cell, plants, microbes, and in
physiology.
Linearity plays a critical role in the study of elementary
differential equations; linear differential equations, especially
systems thereof, demonstrate a fundamental application of linear
algebra. In Differential Equations with Linear Algebra, we explore
this interplay between linear algebra and differential equations
and examine introductory and important ideas in each, usually
through the lens of important problems that involve differential
equations. Written at a sophomore level, the text is accessible to
students who have completed multivariable calculus. With a
systems-first approach, the book is appropriate for courses for
majors in mathematics, science, and engineering that study systems
of differential equations.
Modelling and Control in Biomedical Systems (including Biological
Systems) was held in Reims, France, 20-22 August 2006. This
Symposium was organised by the University of Reims Champagne
Ardenne and the Societe de l Electricite, de l Electronique et des
TIC (SEE).
Explaining and comparing the various standard types of generalised
functions which have been developed during the 20th Century, this
text also contains accounts of recent non-standard theories of
distributions, ultradistributions and Stato-hyperfunctions. The
book could readily be used as a main text on generalised functions
for mathematical undergraduates in final year analysis courses, as
it presupposes little more than a general mathematical background.
It also makes a valuable reference text for non-specific applied
mathematics students, such as physicists or electrical engineers,
needing to gain expertise in the application of generalised
functions to physical problems, without any prior acquaintance of
the specialised subject matter. An ideal companion book to Delta
Functions, also by Professor Hoskins.
A series of seminal technological revolutions has led to a new generation of electronic devices miniaturized to such tiny scales where the strange laws of quantum physics come into play. There is no doubt that, unlike scientists and engineers of the past, technology leaders of the future will have to rely on quantum mechanics in their everyday work. This makes teaching and learning the subject of paramount importance for further progress. Mastering quantum physics is a very non-trivial task and its deep understanding can only be achieved through working out real-life problems and examples. It is notoriously difficult to come up with new quantum-mechanical problems that would be solvable with a pencil and paper, and within a finite amount of time. This book remarkably presents some 700+ original problems in quantum mechanics together with detailed solutions covering nearly 1000 pages on all aspects of quantum science. The material is largely new to the English-speaking audience. The problems have been collected over about 60 years, first by the lead author, the late Prof. Victor Galitski, Sr. Over the years, new problems were added and the material polished by Prof. Boris Karnakov. Finally, Prof. Victor Galitski, Jr., has extended the material with new problems particularly relevant to modern science.
Infinite Words is an important theory in both Mathematics and
Computer Sciences. Many new developments have been made in the
field, encouraged by its application to problems in computer
science. Infinite Words is the first manual devoted to this topic.
A 'stochastic' process is a 'random' or 'conjectural' process, and
this book is concerned with applied probability and statistics.
Whilst maintaining the mathematical rigour this subject requires,
it addresses topics of interest to engineers, such as problems in
modelling, control, reliability maintenance, data analysis and
engineering involvement with insurance.
Aiming to provide the reader with a general overview of the mathematical and numerical techniques used for the simulation of matter at the microscopic scale, this book lays the emphasis on the numerics, but modelling aspects are also addressed. The contributors come from different scientific communities: physics, theoretical chemistry, mathematical analysis, stochastic analysis, numerical analysis, and the text should be suitable for graduate students in mathematics, sciences and engineering and technology.
Transnational Cooperation: An Issue-Based Approach presents an analysis of transnational cooperation or collective action that stresses basic concepts and intuition. Throughout the book, authors Clint Peinhardt and Todd Sandler identify factors that facilitate and/or inhibit such cooperation. The first four chapters lay the analytical foundations for the book, while the next nine chapters apply the analysis to a host of exigencies and topics of great import. The authors use elementary game theory as a tool for illustrating the ideas put forth in the text. Game theory reminds us that rational actors (for example, countries, firms, or individuals) must account for the responses by other rational actors. The book assumes no prior knowledge of game theory; all game-theoretic concepts and analyses are explained in detail to the reader. Peinhardt and Sandler also employ paired comparisons in illustrating the book's concepts. The book is rich in applications and covers a wide range of topics, including superbugs, civil wars, money laundering, financial crises, drug trafficking, terrorism, global health concerns, international trade liberalization, acid rain, leadership, sovereignty, and many others. Students, researchers, and policymakers alike have much to gain from Transnational Cooperation. It is a crossover book for economics, political science, and public policy.
This book is carefully designed to be used on a wide range of
introductory courses at first degree and HND level in the U.K.,
with content matched to a variety of first year degree modules from
IEng and other BSc Engineering and Technology courses. Lecturers
will find the breadth of material covered gears the book towards a
flexible style of use, which can be tailored to their syllabus, and
used along side the other IIE Core Textbooks to bring first year
students up to speed on the mathematics they require for their
engineering degree.
This book may be used as a companion for introductory laboratory courses, as well as possible STEM projects. It covers essential Microsoft EXCEL(R) computational skills while analyzing introductory physics projects. Topics of numerical analysis include: multiple graphs on the same sheet, calculation of descriptive statistical parameters, a 3-point interpolation, the Euler and the Runge-Kutter methods to solve equations of motion, the Fourier transform to calculate the normal modes of a double pendulum, matrix calculations to solve coupled linear equations of a DC circuit, animation of waves and Lissajous figures, electric and magnetic field calculations from the Poisson equation and its 3D surface graphs, variational calculus such as Fermat's least traveling time principle, and the least action principle. Nelson's stochastic quantum dynamics is also introduced to draw quantum particle trajectories.
For a physicist noise is not just about sounds. It refers to any random physical process that blurs measurements and, in so doing, stands in the way of scientific knowledge. This short book deals with the most common types of noise, their properties, and some of their unexpected virtues. The text assumes that the reader knows the basics of probability theory and explains the most useful mathematical concepts related to noise. Finally, it aims at making this subject more widely known, and stimulating interest in its study in young physicists.
Working through this student-centred text readers will be brought
up to speed with the modelling of control systems using Laplace,
and given a solid grounding of the pivotal role of control systems
across the spectrum of modern engineering. A clear, readable text
is supported by numerous worked example and problems.
This updated and revised edition of a widely acclaimed and
successful text for undergraduates examines topology of recent
compact surfaces through the development of simple ideas in plane
geometry. Containing over 171 diagrams, the approach allows for a
straightforward treatment of its subject area. It is particularly
attractive for its wealth of applications and variety of
interactions with branches of mathematics, linked with surface
topology, graph theory, group theory, vector field theory, and
plane Euclidean and non-Euclidean geometry. |
You may like...
Financial Mathematics - A Computational…
K. Pereira, N. Modhien, …
Paperback
R326
Discovery Miles 3 260
Statistics for Management and Economics
Gerald Keller, Nicoleta Gaciu
Paperback
Precalculus: Mathematics for Calculus…
Lothar Redlin, Saleem Watson, …
Paperback
Numbers, Hypotheses & Conclusions - A…
Colin Tredoux, Kevin Durrheim
Paperback
STEM Research for Students Volume 1…
Julia H Cothron, Ronald N Giese, …
Hardcover
R2,712
Discovery Miles 27 120
Calculus: Early Transcendental, 5e
Robert T. Smith, Roland Minton, …
Paperback
R2,051
Discovery Miles 20 510
|