Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics
Basic mathematical techniques for partial differential equations (PDE) with applications to the life sciences form an integral part of the core curriculum for programs in mathematical biology. Yet, students in such a program with an undergraduate training in biology are typically deficient in any exposure to PDE. This volume starts with simple first order PDE and progresses through higher order equations and systems but with interesting applications, even at the level of a single first order PDE with constant coefficients.Similar to the two previous volumes by the author, another unique feature of the book is highlighting the scientific theme(s) of interest for the biological phenomena being modelled and analysed. In addition to temporal evolution of a biological phenomenon, its limiting equilibrium states and their stability, the possibility of locational variations leads to a study of additional themes such as (signal and wave) propagation, spatial patterning and robustness. The requirement that biological developments are relatively insensitive to sustained environmental changes provides an opportunity to examine the issue of feedback and robustness not encountered in the previous two volumes of this series.
This is a book for the second course in linear algebra whereby students are assumed to be familiar with calculations using real matrices. To facilitate a smooth transition into rigorous proofs, it combines abstract theory with matrix calculations.This book presents numerous examples and proofs of particular cases of important results before the general versions are formulated and proved. The knowledge gained from a particular case, that encapsulates the main idea of a general theorem, can be easily extended to prove another particular case or a general case. For some theorems, there are two or even three proofs provided. In this way, students stand to gain and study important results from different angles and, at the same time, see connections between different results presented in the book.
Perfect and amicable numbers, as well as a majority of classes of special numbers, have a long and rich history connected with the names of many famous mathematicians. This book gives a complete presentation of the theory of two classes of special numbers (perfect numbers and amicable numbers) and gives much of their properties, facts and theorems with full proofs of them, as well as their numerous analogue and generalizations.
One-Cocycles and Knot Invariants is about classical knots, i.e., smooth oriented knots in 3-space. It introduces discrete combinatorial analysis in knot theory in order to solve a global tetrahedron equation. This new technique is then used to construct combinatorial 1-cocycles in a certain moduli space of knot diagrams. The construction of the moduli space makes use of the meridian and the longitude of the knot. The combinatorial 1-cocycles are therefore lifts of the well-known Conway polynomial of knots, and they can be calculated in polynomial time. The 1-cocycles can distinguish loops consisting of knot diagrams in the moduli space up to homology. They give knot invariants when they are evaluated on canonical loops in the connected components of the moduli space. They are a first candidate for numerical knot invariants which can perhaps distinguish the orientation of knots.
The Institute for Mathematical Sciences at the National University of Singapore hosted a thematic program on Quantum and Kinetic Problems: Modeling, Analysis, Numerics and Applications from September 2019 to March 2020. As an important part of the program, tutorials and special lectures were given by leading experts in the fields for participating graduate students and junior researchers. This invaluable volume collects six expanded lecture notes with self-contained tutorials. The coverage includes mathematical models and numerical methods for multidimensional solitons in linear and nonlinear potentials; Bose-Einstein condensation (BEC) with dipole-dipole interaction, higher order interaction and spin-orbit coupling; classical and quantum turbulence; and molecular dynamics process based on the first-principle in quantum chemistry.This volume serves to inspire graduate students and researchers who will embark into original research work in these fields.
The thematic program Quantum and Kinetic Problems: Modeling, Analysis, Numerics and Applications was held at the Institute for Mathematical Sciences at the National University of Singapore, from September 2019 to March 2020. Leading experts presented tutorials and special lectures geared towards the participating graduate students and junior researchers.Readers will find in this significant volume four expanded lecture notes with self-contained tutorials on modeling and simulation for collective dynamics including individual and population approaches for population dynamics in mathematical biology, collective behaviors for Lohe type aggregation models, mean-field particle swarm optimization, and consensus-based optimization and ensemble Kalman inversion for global optimization problems with constraints.This volume serves to inspire graduate students and researchers who will embark into original research work in kinetic models for collective dynamics and their applications.
Classical Mechanics teaches readers how to solve physics problems; in other words, how to put math and physics together to obtain a numerical or algebraic result and then interpret these results physically. These skills are important and will be needed in more advanced science and engineering courses. However, more important than developing problem-solving skills and physical-interpretation skills, the main purpose of this multi-volume series is to survey the basic concepts of classical mechanics and to provide the reader with a solid understanding of the foundational content knowledge of classical mechanics. Classical Mechanics: Conservation Laws and Rotational Motion covers the conservation of energy and the conservation of momentum, which are crucial concepts in any physics course. It also introduces the concepts of center-of-mass and rotational motion.
A recent development is the discovery that simple systems of equations can have chaotic solutions in which small changes in initial conditions have a large effect on the outcome, rendering the corresponding experiments effectively irreproducible and unpredictable. An earlier book in this sequence, Elegant Chaos: Algebraically Simple Chaotic Flows provided several hundred examples of such systems, nearly all of which are purely mathematical without any obvious connection with actual physical processes and with very limited discussion and analysis.In this book, we focus on a much smaller subset of such models, chosen because they simulate some common or important physical phenomenon, usually involving the motion of a limited number of point-like particles, and we discuss these models in much greater detail. As with the earlier book, the chosen models are the mathematically simplest formulations that exhibit the phenomena of interest, and thus they are what we consider 'elegant.'Elegant models, stripped of unnecessary detail while maximizing clarity, beauty, and simplicity, occupy common ground bordering both real-world modeling and aesthetic mathematical analyses. A computational search led one of us (JCS) to the same set of differential equations previously used by the other (WGH) to connect the classical dynamics of Newton and Hamilton to macroscopic thermodynamics. This joint book displays and explores dozens of such relatively simple models meeting the criteria of elegance, taste, and beauty in structure, style, and consequence.This book should be of interest to students and researchers who enjoy simulating and studying complex particle motions with unusual dynamical behaviors. The book assumes only an elementary knowledge of calculus. The systems are initial-value iterated maps and ordinary differential equations but they must be solved numerically. Thus for readers a formal differential equations course is not at all necessary, of little value and limited use.
This book is a general introduction to the statistical analysis of networks, and can serve both as a research monograph and as a textbook. Numerous fundamental tools and concepts needed for the analysis of networks are presented, such as network modeling, community detection, graph-based semi-supervised learning and sampling in networks. The description of these concepts is self-contained, with both theoretical justifications and applications provided for the presented algorithms.Researchers, including postgraduate students, working in the area of network science, complex network analysis, or social network analysis, will find up-to-date statistical methods relevant to their research tasks. This book can also serve as textbook material for courses related to thestatistical approach to the analysis of complex networks.In general, the chapters are fairly independent and self-supporting, and the book could be used for course composition "a la carte". Nevertheless, Chapter 2 is needed to a certain degree for all parts of the book. It is also recommended to read Chapter 4 before reading Chapters 5 and 6, but this is not absolutely necessary. Reading Chapter 3 can also be helpful before reading Chapters 5 and 7. As prerequisites for reading this book, a basic knowledge in probability, linear algebra and elementary notions of graph theory is advised. Appendices describing required notions from the above mentioned disciplines have been added to help readers gain further understanding.
This engaging review guide and workbook is the ideal tool for sharpening your Algebra I skills! This review guide and workbook will help you strengthen your Algebra I knowledge, and it will enable you to develop new math skills to excel in your high school classwork and on standardized tests. Clear and concise explanations will walk you step by step through each essential math concept. 500 practical review questions, in turn, provide extensive opportunities for you to practice your new skills. If you are looking for material based on national or state standards, this book is your ideal study tool! Features: *Aligned to national standards, including the Common Core State Standards, as well as the standards of non-Common Core states and Canada*Designed to help you excel in the classroom and on standardized tests*Concise, clear explanations offer step-by-step instruction so you can easily grasp key concepts*You will learn how to apply Algebra I to practical situations*500 review questions provide extensive opportunities for you to practice what you've learned
|
You may like...
Mathematical Statistics with…
William Mendenhall, Dennis Wackerly, …
Paperback
Precalculus: Mathematics for Calculus…
Lothar Redlin, Saleem Watson, …
Paperback
Calculus - Early Transcendentals, Metric…
James Stewart, Saleem Watson, …
Hardcover
Precalculus: Mathematics for Calculus…
James Stewart, Lothar Redlin, …
Paperback
(2)
R2,410 Discovery Miles 24 100
Pearson Edexcel International A Level…
Joe Skrakowski, Harry Smith
Digital product license key
R880
Discovery Miles 8 800
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R2,832
Discovery Miles 28 320
|