Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics
This work presents the guiding principles of Integral Transforms needed for many applications when solving engineering and science problems. As a modern approach to Laplace Transform, Fourier series and Z-Transforms it is a valuable reference for professionals and students alike.
For courses in Differential Equations and Linear Algebra. The right balance between concepts, visualisation, applications, and skills Differential Equations and Linear Algebra provides the conceptual development and geometric visualisation of a modern differential equations and linear algebra course that is essential to science and engineering students. It balances traditional manual methods with the new, computer-based methods that illuminate qualitative phenomena - a comprehensive approach that makes accessible a wider range of more realistic applications. The book combines core topics in elementary differential equations with concepts and methods of elementary linear algebra. It starts and ends with discussions of mathematical modeling of real-world phenomena, evident in figures, examples, problems, and applications throughout.
This volume features the latest scientific developments in the fields of computability theory and logical foundations of mathematics as well as applications. The scope involves the topics of Computability Theory, Reverse Mathematics, Nonstandard Analysis, Proof Theory, Set Theory, Philosophy of Mathematics, Constructive Mathematics, Theory of Randomness and Computational Complexity Theory.
The term "stereotype space" was introduced in 1995 and denotes a category of locally convex spaces with surprisingly elegant properties. Its study gives an unexpected point of view on functional analysis that brings this fi eld closer to other main branches of mathematics, namely, to algebra and geometry. This volume contains the foundations of the theory of stereotype spaces, with accurate definitions, formulations, proofs, and numerous examples illustrating the interaction of this discipline with the category theory, the theory of Hopf algebras, and the four big geometric disciplines: topology, differential geometry, complex geometry, and algebraic geometry.
This book demonstrates Microsoft EXCEL-based Fourier transform of selected physics examples. Spectral density of the auto-regression process is also described in relation to Fourier transform. Rather than offering rigorous mathematics, readers will "try and feel" Fourier transform for themselves through the examples. Readers can also acquire and analyze their own data following the step-by-step procedure explained in this book. A hands-on acoustic spectral analysis can be one of the ideal long-term student projects.
This book contains selected chapters on recent research in topology. It bridges the gap between recent trends of topological theories and their applications in areas like social sciences, natural sciences, soft computing, economics, theoretical chemistry, cryptography, pattern recognitions and granular computing. There are 14 chapters, including two chapters on mathematical economics from the perspective of topology. The book discusses topics on function spaces, relator space, preorder, quasi-uniformities, bitopological dynamical systems, b-metric spaces and related fixed point theory. This book is useful to researchers, experts and scientists in studying the cutting-edge research in topology and related areas and helps them applying topology in solving real-life problems the society and science are facing these days..Â
Boundary value problems on bounded or unbounded intervals, involving two or more coupled systems of nonlinear differential and integral equations with full nonlinearities, are scarce in the literature. The present work by the authors desires to fill this gap. The systems covered here include differential and integral equations of Hammerstein-type with boundary constraints, on bounded or unbounded intervals. These are presented in several forms and conditions (three points, mixed, with functional dependence, homoclinic and heteroclinic, amongst others). This would be the first time that differential and integral coupled systems are studied systematically. The existence, and in some cases, the localization of the solutions are carried out in Banach space, following several types of arguments and approaches such as Schauder's fixed-point theorem or Guo-Krasnosel'ski? fixed-point theorem in cones, allied to Green's function or its estimates, lower and upper solutions, convenient truncatures, the Nagumo condition presented in different forms, the concept of equiconvergence, Caratheodory functions, and sequences. Moreover, the final part in the volume features some techniques on how to relate differential coupled systems to integral ones, which require less regularity. Parallel to the theoretical explanation of this work, there is a range of practical examples and applications involving real phenomena, focusing on physics, mechanics, biology, forestry, and dynamical systems, which researchers and students will find useful.
Secret sharing schemes form one of the most important topic in Cryptography. These protocols are used in many areas, applied mathematics, computer science, electrical engineering. A secret is divided into several pieces called shares. Each share is given to a user of the system. Each user has no information about the secret, but the secret can be retrieved by certain authorized coalition of users.This book is devoted to such schemes inspired by Coding Theory. The classical schemes of Shamir, Blakley, Massey are recalled. Survey is made of research in Combinatorial Coding Theory they triggered, mostly self-dual codes, and minimal codes. Applications to engineering like image processing, and key management of MANETs are highlighted.
This book is intended as a textbook for a one-term senior undergraduate (or graduate) course in Ring and Field Theory, or Galois theory. The book is ready for an instructor to pick up to teach without making any preparations.The book is written in a way that is easy to understand, simple and concise with simple historic remarks to show the beauty of algebraic results and algebraic methods. The book contains 240 carefully selected exercise questions of varying difficulty which will allow students to practice their own computational and proof-writing skills. Sample solutions to some exercise questions are provided, from which students can learn to approach and write their own solutions and proofs. Besides standard ones, some of the exercises are new and very interesting. The book contains several simple-to-use irreducibility criteria for rational polynomials which are not in any such textbook.This book can also serve as a reference for professional mathematicians. In particular, it will be a nice book for PhD students to prepare their qualification exams. |
You may like...
Numerical Analysis
Annette M Burden, Richard Burden, …
Hardcover
Mathematical Statistics with…
William Mendenhall, Dennis Wackerly, …
Paperback
Financial Mathematics - A Computational…
K. Pereira, N. Modhien, …
Paperback
Precalculus: Mathematics for Calculus…
James Stewart, Lothar Redlin, …
Paperback
(2)
R2,410 Discovery Miles 24 100
Numbers, Hypotheses & Conclusions - A…
Colin Tredoux, Kevin Durrheim
Paperback
Statistics For Business And Economics
David Anderson, James Cochran, …
Paperback
(1)
R2,342 Discovery Miles 23 420
|