![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Earth & environment > Earth sciences > Meteorology
General circulation models (GCMs), which define the fundamental dynamics of atmospheric circulation, are nowadays used in various fields of atmospheric science such as weather forecasting, climate predictions and environmental estimations. The Second Edition of this renowned work has been updated to include recent progress of high resolution global modeling. It also contains for the first time aspects of high-resolution global non-hydrostatic models that the author has been studying since the publication of the first edition. Some highlighted results from the Non-hydrostatic ICosahedral Atmospheric Model (NICAM) are also included. The author outlines the theoretical concepts, simple models and numerical methods for modeling the general circulation of the atmosphere. Concentrating on the physical mechanisms responsible for the development of large-scale circulation of the atmosphere, the book offers comprehensive coverage of an important and rapidly developing technique used in the atmospheric science. Dynamic interpretations of the atmospheric structure and their aspects in the general circulation model are described step by step.
Why did T-Rex become extinct? Why did the Mayan civilization
disappear? If the ancient Israelis did indeed cross the Red Sea, as
reported in the Bible, what weather phenomena might have produced
the parting of the waters? Why was nearly all human life swept away
73,000 years ago? And what factors created the Great American
Dustbowl of the 1930s?
This is the first book dedicated to the developing knowledge on how
the world's largest ice sheet formed and changed over its 34
million years history. In explaining the story of Antartica,
information on terrestrial and marine geology, sedimentology,
glacier geophysics (including airborne reconnaissance), shipborne
geophysics, and numerical ice sheet and climate modelling, will be
interwoven within eleven chapters, each deling with an important
historical theme. The approach will be to first 'set the scene',
involving chapters dedicated to how ice sheets and their glacial
history can be measured. This opening section will provide
information necessary to comprehend the latter section of the book,
in which five chapters will related the glacial and climate
evolution of Antartica during the most important time-frames in
which changes have occurred.
Global Change studies are increasingly being considered a vital source of information to understand the Earth Environment, in particular in the framework of human-induced climate change and land use transformation. Satellite Earth Observing systems provide a unique tool to monitor those changes. While the range of applications and innovative techniques is constantly increasing, this book provides a summary of key case studies where satellite data offer critical information to understand the causes and effects of those environmental changes, minimizing their negative impacts. This book will be of interest to researchers and practitioners in the field of remote sensing, geographical information, meteorology and environmental sciences. Also scientists and graduate up to post-graduate level students in environmental science will find valuable information in this book.
Climate and other environmental changes are drawing unprecedented concern and attention from national governments, international organizations and local communities. Global warming has left noticeable impacts on the environment and the ecosystems it supports (including humans), and has important implications for sustainable economic and social development in the future. Satellite observations of climate and environmental change have become an increasingly important tool in recent years in helping to shape the response of international communities to this critical global challenge. The book presents the latest advances in satellite-based remote sensing of the Earth's environment - ranging from applications in climate and atmospheric science to hydrology, oceanography, hydrology, geomorphology, ecology and fire studies. Introductory chapters also cover key technical aspects such as instrumentation, calibration, data analysis, and GIS tools for decision-making.
In 1998, my colleague, Forrest Mims, and I began a project to develop inexpensive handheld atmosphere monitoring instruments for the GLOBE Program, an international environmental science and education program that began its operations on Earth Day, 1995. GLOBE's goal was to involve students, teachers, and scientists around the world in authentic partn- ships in which scientists would develop instrumentation and experimental protocols suitable for student use. In return, data collected by students and their teachers would be used by scientists in their research. This kind of collaboration represented a grand vision for science education which had never before been attempted on such a scale, and we embraced this vision with great enthusiasm. Between 1998 and 2006, Forrest Mims and I collaborated on the development of several instruments based on Mims' original concept of using light emitting diodes as spectrally selective detectors of sunlight, which was first published in the peer-reviewed literature in 1992. These instruments have evolved into a set of tools and procedures for monitoring the transmission of sunlight through the atmosphere, and they can be used to learn a great deal about the composition of the atmosphere and the dynamics of the Earth/atmosphere/sun system. If measurements with these instruments are made properly, they have significant scientific value, as well.
The term "soft computing" applies to variants of and combinations under the four broad categories of evolutionary computing, neural networks, fuzzy logic, and Bayesian statistics. Although each one has its separate strengths, the complem- tary nature of these techniques when used in combination (hybrid) makes them a powerful alternative for solving complex problems where conventional mat- matical methods fail. The use of intelligent and soft computing techniques in the field of geo- chanical and pavement engineering has steadily increased over the past decade owing to their ability to admit approximate reasoning, imprecision, uncertainty and partial truth. Since real-life infrastructure engineering decisions are made in ambiguous environments that require human expertise, the application of soft computing techniques has been an attractive option in pavement and geomecha- cal modeling. The objective of this carefully edited book is to highlight key recent advances made in the application of soft computing techniques in pavement and geo- chanical systems. Soft computing techniques discussed in this book include, but are not limited to: neural networks, evolutionary computing, swarm intelligence, probabilistic modeling, kernel machines, knowledge discovery and data mining, neuro-fuzzy systems and hybrid approaches. Highlighted application areas include infrastructure materials modeling, pavement analysis and design, rapid interpre- tion of nondestructive testing results, porous asphalt concrete distress modeling, model parameter identification, pavement engineering inversion problems, s- grade soils characterization, and backcalculation of pavement layer thickness and moduli.
A vast amount has been written on climate change and what should be our response. Rise and Fall of the Carbon Civilisation suggests that most of this literature takes a far too optimistic position regarding the potential for conventional mitigation solutions to achieve the deep cuts in greenhouse gases necessary in the limited time frame we have available. In addition, global environmental problems, as exemplified by climate change, and global resource problems - such as fossil fuel depletion or fresh water scarcity - have largely been seen as separate issues. Further, proposals for solution of these problems often focus at the national level, when the problems are global. The authors argue that the various challenges the planet faces are both serious and interconnected. Rise and Fall of the Carbon Civilisation takes a global perspective in its treatment of various solutions: * renewable energy; * nuclear energy; * energy efficiency; * carbon sequestration; and * geo-engineering. It also addresses the possibility that realistic solutions cannot be achieved until the fundamentally ethical question of global equity - both across nations today and also inter-generational - is fully addressed. Such an approach will also involve reorienting the global economy away from an emphasis on growth and toward the direct satisfaction of basic human needs for all the Earth's people. Rise and Fall of the Carbon Civilisation is aimed at the many members of the public with an awareness of climate change, but who wish to find out more about how we need to respond to the challenge. It will also be of interest to technical professionals, as well as postgraduate students and researchers, from the environmental and engineering science sectors.
This book addresses applications of earthquake engineering for both offshore and land-based structures. It is self-contained as a reference work and covers a wide range of topics, including topics related to engineering seismology, geotechnical earthquake engineering, structural engineering, as well as special contents dedicated to design philosophy, determination of ground motions, shock waves, tsunamis, earthquake damage, seismic response of offshore and arctic structures, spatial varied ground motions, simplified and advanced seismic analysis methods, sudden subsidence of offshore platforms, tank liquid impacts during earthquakes, seismic resistance of non-structural elements, and various types of mitigation measures, etc. The target readership includes professionals in offshore and civil engineering, officials and regulators, as well as researchers and students in this field.
Due to political pressures, prior to the 1990s little was known
about the nature of human foraging adaptations in the deserts,
grasslands, and mountains of north western China during the last
glacial period. Even less was known about the transition to
agriculture that followed. Now open to foreign visitation, there is
now an increasing understanding of the foraging strategies which
led both to the development of millet agriculture and to the
utilization of the extreme environments of the Tibetan Plateau.
This text explores the transition from the foraging societies of
the Late Paleolithic to the emergence of settled farming societies
and the emergent pastoralism of the middle Neolithic striving to
help answer the diverse and numerous questions of this critical
transitional period.
The Juneau Icefield Research Project (JIRP) was formed to find a
prototype area to study Alaska's coastal glaciers and trends in
climatic change. For the past 57 years JIRP has conducted a
systematic study of key receding and advancing glaciers, including
Lemon Creek and Taku Glaciers. From this study, a model has been
developed to study the mass balance of these glaciers and their
relation to general atmospheric circulation. Taku's mass balance
was expected to provide a meaningful assessment of flakier climate
relations and environmental trends, specifically the increase in
atmospheric trace element pollution and global warming.
This monograph provides state-of-the-art theoretical and computational findings from investigations on physical and chemical dissolution front instability problems in porous media, based on the author s own work. Although numerical results are provided to complement theoretical ones, the focus of this monograph is on the theoretical aspects of the topic and those presented in this book are applicable to a wide range of scientific and engineering problems involving the instability of nonlinear dynamic systems. To appeal to a wider readership, common mathematical notations are used to derive the theoretical solutions. The book can be used either as a useful textbook for postgraduate students or as a valuable reference book for computational scientists, mathematicians, engineers and geoscientists."
The Earth's average temperature has risen by 1.4 DegreesF over the past century, and computer models project that it will rise much more over the next hundred years, with significant impacts on weather, climate, and human society. Many climate scientists attribute these increases to the build up of greenhouse gases produced by the burning of fossil fuels and to the anthropogenic production of short-lived climate pollutants. Climate Change Modeling Methodologies: Selected Entries from the Encyclopaedia of Sustainability Science and Technology provides readers with an introduction to the tools and analysis techniques used by climate change scientists to interpret the role of these forcing agents on climate. Readers will also gain a deeper understanding of the strengths and weaknesses of these models and how to test and assess them. The contributions include a glossary of key terms and a concise definition of the subject for each topic, as well as recommendations for sources of more detailed information.
A three-tier approach is presented: (i) fundamental dynamical concepts of climate processes, (ii) their mathematical formulation based on balance equations, and (iii) the necessary numerical techniques to solve these equations. This book showcases the global energy balance of the climate system and feedback processes that determine the climate sensitivity, inital-boundary value problems, energy transport in the climate system, large-scale ocean circulation and abrupt climate change.
Emissions of CO2 have come to be regarded as the main factor in climate change in recent years, and how to control them has become a pressing issue. The problem cannot simply be labeled a technological one, however, because it is deeply involved with social and economic issues. Since 2008, the Global Center of Excellence (COE) program titled Energy Science in the Age of Global Warming Toward a CO2 Zero-Emission Energy System has been held at Kyoto University, Japan. The program aims to establish an international education and research platform to foster educators, researchers, and policy makers who can develop technologies and propose policies toward a zero-emission society by the year 2100. Setting out a zero-emission technology roadmap, Global COE promotes socioeconomic studies of energy, the study of new technologies for renewable energies, and research in advanced nuclear energy. A compilation of the lectures and presentations from the first symposium of Global COE held at Kyoto University, this book is intended to provide the impetus for the establishment of low carbon energy science to bring about harmony between mankind and the environment."
An accessible account of the ways in which the world's plant life affects the climate. It covers everything from tiny local microclimates created by plants to their effect on a global scale. If you ve ever wondered how vegetation can create clouds, haze and rain, or how plants have an impact on the composition of greenhouse gases, then this book is required reading."
The Mediterranean basin represents one of the most important "hot spots" of climate change in the world, with recent trends towards a hotter and drier climate being related to changes in atmospheric circulation patterns. Such changes can have significant impacts in the climate of this region but also on the natural environment and several socioeconomic activities. Among these patterns, the North Atlantic Oscillation (NAO) is one of the main forcing factors in the region with impact on extreme events such as droughts, severe precipitations or heat and cold waves, the availability of water resources, the ecological dynamics, the quality and quantity of crops, the migration and welfare of animal populations, the fisheries dynamics, the triggering of landslides and the air pollution and human health, among others. The aim of Hydrological, Socioeconomic and Ecological Impacts of the North Atlantic Oscillation in the Mediterranean Region, is to serve as an updated reference text that covers the wide range of evidences on the NAO impacts in the Mediterranean regions and from a multidisciplinary perspective. This volume constitutes a unique document to present the state of the art of the numerous studies undertaken on the hydrological, socioeconomic and ecological impact of the NAO, collecting the expertise of researchers from several complementary earth science fields (geography, hydrology, remote-sensing, climatology, agriculture, energy), but that have been lacking a common ground.
This book presents selected contributions of the 34th International School of Hydraulics that was held in May 2015 in Zelechow, Poland. It gives an overview about the state of the art in environmental hydraulics. A special emphasis is put upon physical, biochemical and ecological processes that act at interfaces in natural surface water bodies but also other important hydraulic problems are considered. The achievements of well-known researchers from all over the world as well as the results obtained by young researchers, among others within a Marie Curie funded Initial Training Network, led by the University of Padua (HYTECH - HYdrodynamic Transport at Ecologically Critical Heterogeneous Interfaces) are gathered in this volume.
This volume covers topics relating reactive atmospheric chemistry, pathways for material transport within the atmosphere, and exchanges with the land, biota, oceans, and solid earth. The emphasis is on species of relevance to global climate and global chemical budgets, as well as on the application of geochemical methods, such as isotope techniques, for deciphering pathways and rates of material exchange within the atmosphere and with other reservoirs. The topics covered here have long histories, related to their importance for problems of global climate change, the ozone layers, and other global impacts on humanity.
This book focuses on the analysis and design of advanced techniques for on-line automatic computational monitoring of pipelines and pipe networks. It discusses how to improve the systems' security considering mathematical models of the flow, historical flow rate and pressure data, with the main goal of reducing the number of sensors installed along a pipeline. The techniques presented in the book have been implemented in digital systems to enhance the abilities of the pipeline network's operators in recognizing anomalies. A real leak scenario in a Mexican water pipeline is used to illustrate the benefits of these techniques in locating the position of a leak. Intended for an interdisciplinary audience, the book addresses researchers and professionals in the areas of mechanical, civil and control engineering. It covers topics on fluid mechanics, instrumentation, automatic control, signal processing, computing, construction and diagnostic technologies.
This book presents a systematic attempt to generalize several fundamental physical laws related to subsurface fluid flow that are important for a number of contemporary applications in the areas of hydrogeology, reservoir engineering and rock mechanics. It also covers the history of discovering these physical laws, their respective scope of validity, and their generalizations or extensions. The physical laws discussed include Darcy's law, Darcy-Buckingham law and Hooke's law. Darcy's law is the fundamental law for subsurface fluid flow. For low-permeability media, it is not always adequate because of the strong fluid-solid interaction. Though the Darcy-Buckingham law is often used for modeling subsurface multiphase flow, it is only valid under the local equilibrium condition. This condition does not hold in many cases, especially when fingering flow occurs. It is well known that subsurface fluid flow is coupled with mechanical deformation of subsurface media; in some applications, this coupling can play a dominant role. The continuum-scale elastic deformation of natural rock, however, does not always follow the traditional form of Hooke's law. The book also presents applications of the proposed generalizations of the physical laws to several important engineering projects. |
You may like...
Climate Impacts on Extreme Weather…
Victor Ongoma, Hossein Tabari
Paperback
R2,801
Discovery Miles 28 010
The Arctic - A Barometer of Global…
Neloy Khare, Rajni Khare
Paperback
R2,821
Discovery Miles 28 210
Global Change Scenarios of the 21st…
J. Alcamo, R. Leemans, …
Hardcover
R4,336
Discovery Miles 43 360
Resilience - The Science of Adaptation…
Zinta Zommers, Keith Alverson
Paperback
R2,099
Discovery Miles 20 990
Modeling and Mitigation Measures for…
Kasiviswanathan KS, Soundharajan Dr., …
Paperback
R3,436
Discovery Miles 34 360
|