![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Earth & environment > Earth sciences > Meteorology
The book provides an elaborate treatment of groundwater prospecting and management covering remote sensing, geological-geophysical cum hydrogeological studies, exploration (geological and geophysical), development (well logging techniques, pump test, its analysis and applications in well design), contamination (pollution of groundwater) and regulatory legislations regarding groundwater utilization under one cover. The book presents an elucidation of fundamental and theoretical background of each technique supported by necessary illustrative examples and exclusive case studies. It is a text-cum-reference book not only for students, research scholars and practicing earth scientists but also for practicing civil and agricultural engineers working in the application of groundwater resources, engaged in its exploration, development, contamination, legislation and management. The general readers can also refer the book for understanding the groundwater domain for adequate knowledge, as groundwater resources are essential life support commodity which is replenishable but not inexhaustible.
Flash floods typically develop in a period a few hours or less and can arise from heavy rainfall and other causes, such as dam or flood defence breaches, and ice jam breaks. The rapid development, often associated with a high debris content, can present a considerable risk to people and property. This book describes recent developments in techniques for monitoring and forecasting the development of flash floods, and providing flood warnings. Topics which are discussed include rainfall and river monitoring, nowcasting, Numerical Weather Prediction, rainfall-runoff modelling, and approaches to the dissemination of flood warnings and provision of an emergency response. The book is potentially useful on civil engineering, water resources, meteorology and hydrology courses (and for post graduate studies) but is primarily intended as a review of the topic for a wider audience.
Since 2008, the Global Center of Excellence (COE) at Kyoto University, Japan, has been engaged in a program called "Energy Science in the Age of Global Warming-Toward a CO2 Zero-Emission Energy System." Its aim is to establish an international education and research platform to foster educators, researchers, and policy makers who can develop technologies and propose policies for establishing a CO2 zero-emission society no longer dependent on fossil fuels. It is well known that the energy problem cannot simply be labeled a technological one, as it is also deeply involved with social and economic issues. The establishment of a "low-carbon energy science" as an interdisciplinary field integrating social sciences with natural sciences is necessary. The Global COE is setting out a zero-emission technology roadmap and is promoting socioeconomic studies of energy, studies of new technologies for renewable energies, and research for advanced nuclear energy. It has also established the Global COE Unit for Energy Science Education to support young researchers as they apply their skills and knowledge and a broad international perspective to respond to issues of energy and the environment in our societies. Comprising the proceedings of the Third International Symposium of the Global COE Program, this book follows on the earlier volumes Zero-Carbon Energy Kyoto 2009 and 2010, published in March 2010 and February 2011, respectively.
ESA's Venus Express Mission has monitored Venus since April 2006, and scientists worldwide have used mathematical models to investigate its atmosphere and model its circulation. This book summarizes recent work to explore and understand the climate of the planet through a research program under the auspices of the International Space Science Institute (ISSI) in Bern, Switzerland. Some of the unique elements that are discussed are the anomalies with Venus' surface temperature (the huge greenhouse effect causes the surface to rise to 460 DegreesC, without which would plummet as low as -40 DegreesC), its unusual lack of solar radiation (despite being closer to the Sun, Venus receives less solar radiation than Earth due to its dense cloud cover reflecting 76% back) and the juxtaposition of its atmosphere and planetary rotation (wind speeds can climb up to 200 m/s, much faster than Venus' sidereal day of 243 Earth-days).
In this book the eminent authors analyse the ice cover variability in the Arctic Seas during the 20th and early 21st centuries. In the first two chapters, they show that multi-year changes of the sea-ice extent in the Arctic Seas were formed by linear trends and long-term (climatic) cycles lasting about 10, 20 and 60 years. The structure of temporal variability of the western region (Greenland - Kara) differs significantly from the eastern region seas (Laptev and Chukchi). In the latter region, unlike the former area, relatively short-period cycles (up to 10 years) predominate. The linear trends can be related to a super-secular cycle of climatic changes over about 200 years. The most significant of these cycles, lasting 60 years, is most pronounced in the western region seas.
Landslides and debris flows belong to the most dangerous natural hazards in many parts of the world. Despite intensive research, these events continue to result in human suffering, property losses, and environmental degradation every year. Better understanding of the mechanisms and processes of landslides and debris flows will help make reliable predictions, develop mitigation strategies and reduce vulnerability of infrastructure. This book presents contributions to the workshop on Recent Developments in the Analysis, Monitoring and Forecast of Landslides and Debris Flow, in Vienna, Austria, September 9, 2013. The contributions cover a broad spectrum of topics from material behavior, physical modelling over numerical simulation to applications and case studies. The workshop is a joint event of three research projects funded by the European Commission within the 7th Framework Program: MUMOLADE (Multiscale modelling of landslides and debris flows, www.mumolade.com), REVENUES (Numerical Analysis of Slopes with Vegetations, http://www.revenues-eu.com) and HYDRODRIL (Integrated Risk Assessment of Hydrologically-Driven Landslides, www.boku.ac.at/igt/).
Wallace Akin was two years old when the Tri-State Tornado picked up
his house-with he and his mother inside-and dropped it atop two
other collapsed buildings. Across town, his father lay unconscious
near his auto shop, close to death, and Akin's brother managed to
crawled from beneath the collapsed shop. All survived. Many others
were not as fortunate: Earlier that afternoon, a supercell
thunderstorm had spawned a tornado so deadly that it set records
against which we still measure all other tornados. The storm ripped
through southeast Missouri, southern Illinois, and southwest
Indiana, killing 695 people and wounding 2,000, in a
record-breaking 219-mile, 3-hour path of destruction. His hometown
was the worst hit, losing 243 people to the tornado.
This book brings forward the concept of the geology-environmental capacity of ground buildings. It quantifies the geology-environmental capacity of ground buildings by analyzing the main factors of land subsidence and setting up the evaluation system. The geological environmental capacity of ground buildings is mainly controlled by the land subsidence and the output is the floor area ratio. According to the different geology structures and the different requirements of subsidence control in the soft soil areas in Shanghai, the evaluation system of the floor area ratio is built up by the adaptive neuro-fuzzy inference system (ANFIS) and the floor area ratios of four typical regions (Lujiazui, Xujiahui, Zhongyuan and Changqiao) are obtained by the ANFIS to offer references for urban planning. By taking the typical soft soil areas in Shanghai as case studies, this book will provide valuable insights to professors and graduate students in the field of Geotechnical Engineering, Civil Engineering, Engineering Geology and Environmental Geology.
This book takes an excursion through solar science, science history, and geoclimate with a husband and wife team who revealed some of our sun's most stubborn secrets. E Walter and Annie S D Maunder's work helped in understanding our sun's chemical, electromagnetic and plasma properties. They knew the sun's sunspot migration patterns and its variable, climate-affecting, inactive and active states in short and long time frames. An inactive solar period starting in the mid-seventeenth century lasted approximately seventy years, one that E Walter Maunder worked hard to make us understand: the Maunder Minimum of c 1620-1720 (which was posthumously named for him). With ongoing concern over global warming, and the continuing failure to identify root causes driving earth's climatic changes, the Maunders' story outlines how our cyclical sun can alter climate. The book goes on to view the sun-earth connection in terms of geomagnetic variation and climatic change; contemporary views on the sun's operating mechanisms are explored, and the effects these have on the earth over long and short time scales are pondered. If not a call to widen earth's climate research to include the sun, this book strives to illustrate how solar causes and effects can influence earth's climate in ways we must understand in order to enhance solar system research and our well-being.
This volume contains refereed papers submitted by international experts who participated in the Atmospheric Modeling workshop March 15 -19, 2000 at the Institute for Mathematics and Its Applications (IMA) at the University of Minnesota. The papers cover a wide range of topics presented in the workshop. In particular, mathematical topics include a performance comparison of operator-splitting and non- splitting methods, time-stepping methods to preserve positivity and consideration of multiple timescale issues in the modeling of atmospheric chemistry, a fully 3D adaptive-grid method, impact of rid resolution on model predictions, testing the robustness of different flow fields, modeling and numerical methods in four-dimensional variational data assimilation, and parallel computing. Modeling topics include the development of an efficient self-contained global circulation-chemistry-transport model and its applications, the development of a modal aerosol model, and the modeling of the emissions and chemistry of monoterpenes that lead to the formation of secondary organic aerosols. The volume provides an excellent cross section of current research activities in atmospheric modeling.
This book deals in a modern manner with a family of named problems from an old and mature subject, classical elasticity. These problems are formulated over either a half or the whole of a linearly elastic and isotropic two- or three-dimensional space, subject to loads concentrated at points or lines. The discussion of each problem begins with a careful examination of the prevailing symmetries, and proceeds with inverting the canonical order, in that it moves from a search for balanced stress fields to the associated strain and displacement fields. The book, although slim, is fairly well self-contained; the only prerequisite is a reasonable familiarity with linear algebra (in particular, manipulation of vectors and tensors) and with the usual differential operators of mathematical physics (gradient, divergence, curl, and Laplacian); the few nonstandard notions are introduced with care. Support material for all parts of the book is found in the final Appendix.
This book focuses on the phenomenon of sediment erosion and resuspension in the Yellow River delta, China, which is a vital issue involved in understanding the sediment transport processes in estuarine and coastal environments, and how these contribute to the nature and distribution of geohazards in the subaqueous Yellow River delta and Bohai Sea. The most important sections of this book will be the detailed physical mechanisms and theoretical models of sediment erosion and resuspension problem fully considering the wave-induced seabed dynamic response to waves, which are particularly useful for postgraduate students and junior researchers entering the discipline of estuary and coastal sedimentation, marine geotechnical engineering, estuary and coastal engineering, harbor and waterway engineering and coastal environmental protection. This book can also serve as a textbook for advanced graduate students of Marine Engineering Geology and Estuarine Sediment Dynamics.
Since the Industrial Revolution the chemical composition of the atmosphere has changed at a rate unprecedented in recent history. Ozone depletion emerged as one of the most important environmental issues of the 20th century as evidence grew for substantial human influences on the atmospheric ozone abundances over much of the globe. The science of the ozone layer and its interactions with halogenated chemical compounds are the primary subjects of this book. The volume provides a comprehensive view of the chemical, dynamical, and radiative processes that affect ozone and other chemicals in the stratosphere and mesosphere.
South America is a unique place where a number of past climate archives are ava- able from tropical to high latitude regions. It thus offers a unique opportunity to explore past climate variability along a latitudinal transect from the Equator to Polar regions and to study climate teleconnections. Most climate records from tropical and subtropical South America for the past 20,000 years have been interpreted as local responses to shift in the mean position and intensity of the InterTropical Conv- gence Zone due to tropical and extratropical forcings or to changes in the South American Summer Monsoon. Further South, the role of the Southern Hemisphere westerly winds on global climate has been highly investigated with both paleodata and coupled climate models. However the regional response over South America during the last 20,000 years is much more variable from place to place than pre- ously thought. The factors that govern the spatial patterns of variability on millennial scale resolution are still to be understood. The question of past natural rates and ranges of climate conditions over South America is therefore of special relevance in this context since today millions of people live under climates where any changes in monsoon rainfall can lead to catastrophic consequences.
The concept of carbonaceous aerosol has only recently emerged from atmospheric pollution studies; even standard nomenclature and terminology are still unsettled. This monograph is the first to offer comprehensive coverage of the nature and atmospheric role of carbonaceous aerosol particles. Atmospheric chemists, physicists, meteorologists, and modellers will find this a thought-inspiring and sometimes provocative overview of all global phenomena affected by or related to carbonaceous aerosol.
Jesuits established a large number of astronomical, geophysical and
meteorological observatories during the 17th and 18th centuries and
again during the 19th and 20th centuries throughout the world. The
history of these observatories has never been published in a
complete form. Many early European astronomical observatories were
established in Jesuit colleges.
The field of physical oceanography has matured to a point where it is now conceivable to combine numerical models and observations via data assimilation in order to provide ocean prediction products on various spatial and time scales. As a result, many nations have begun large-scale efforts to provide routine products to the oceanographic community and started to develop operational oceanography systems. The Global Ocean Data Assimilation Experiment (GODAE) provides a framework for these efforts, i.e., a global system of observations, communications, modeling, and assimilation that will deliver regular, comprehensive information on the state of the oceans, in a way that will promote and engender wide utility and availability of this resource for maximum benefit to the community. The societal benefit of this experiment will be an increased knowledge of the marine environment and ocean climate, predictive skills for societal, industrial, and commercial benefit and tactical and strategic advantage, as well as the provision of a comprehensive and integrated approach to the oceans. We therefore considered it timely, given the international context, to bring together leading scientists, system developers, and application providers to present an integrated view of oceanography. The chapters collected in this volume cover a wide range of topics and summarize our present knowledge in ocean modeling, ocean observing systems, and data assimilation.
which successfully passed the QA-process (i.e., met the Data Quality Objectices) were included into the TFS-central data bank. The following summary of major results obtained in TFS would not have been possible without the contribution of many experimentalists and modellers participating in this project. I would like to thank these colleagues for their support. All participants are grateful for the financial support by the BMBF and for the assistance by the Projekttragerschaft (UKF-GSF-Miinchen). Garmisch-Partenkirchen, WOLFGANG SEILER February 2002 DEVELOPMENT AND APPLICATION OF A MESOSCALE MODEL HIERARCHY FOR THE DIAGNOSIS AND FORECAST OF THE DISTRIBUTION OF POLLUTANTS OVER GERMANY AND EUROPE Journal of Atmospheric Chemistry 42: 5-22, 2002. 5 (c) 2002 Kluwer Academic Publishers. An Empirical, Receptor-Based Procedure for Assessing the Effect of Different Ozone Mitigation Strategies WOLFGANG FRICKE, WINFRIED VANDERSEE and STEFAN GILGE Deutscher Wetterdienst, Meteorologisches Observatorium, Albin-Schwaiger-Weg 10, D-82383 Hohenpeissenberg, Germany, e-mail: [email protected] (Received: 6 November 2000; in final form: 29 May 2(01) Abstract. The paper presents a new receptor-based approach for investigating the effect of differ- ent mitigation strategies on surface ozone concentrations. The empirical approach relates measured ozone concentrations to 3-D back trajectories and European precursor emission data (NOx, VOC, isoprene). These are the only parameters used as input. Following a description of the method, results for two German stations, an urban and a rural mountain site, are described, and discussed in detail.
Our desire to understand the global carbon cycle and its link to the climate system represents a huge challenge. These overarching questions have driven a great deal of scientific endeavour in recent years: What are the basic oceanic mechanisms which control the oceanic carbon reservoirs and the partitioning of carbon between ocean and atmosphere? How do these mechanisms depend on the state of the climate system and how does the carbon cycle feed back on climate? What is the current rate at which fossil fuel carbon dioxide is absorbed by the oceans and how might this change in the future? To begin to answer these questions we must first understand the distribution of carbon in the ocean, its partitioning between different ocean reservoirs (the "solubility" and "biological" pumps of carbon), the mechanisms controlling these reservoirs, and the relationship of the significant physical and biological processes to the physical environment. The recent surveys from the JGOFS and WOCE (Joint Global Ocean Flux Study and World Ocean Circulation Ex periment) programs have given us a first truly global survey of the physical and biogeochemical properties of the ocean. These new, high quality data provide the opportunity to better quantify the present oceans reservoirs of carbon and the changes due to fossil fuel burning. In addition, diverse process studies and time-series observations have clearly revealed the complexity of interactions between nutrient cycles, ecosystems, the carbon-cycle and the physical envi ronment."
The term Little Ice Age' was originally used by glaciologists to describe the most recent major glacial advance of the Holocene. Subsequently, the Little Ice Age' has come to be associated with a period of advances of European glaciers between about 1450 to 1850, as well as with relatively cooler temperatures. The issue of whether or not this concept remains accurate is a major theme of many of the papers included in this volume. The main geographical focus is on the North Atlantic and European sectors, and includes research from a number of different palaeoclimatic fields. Examples are the use of documentary sources, early instrumental records, grain-harvest data, fossil-insect data, ice-core records, glacial evidence, lichenometry, synoptic climatology, and also the human dimensions of climate change. The papers presented reflect state-of-the-art knowledge, as well as thought-provoking new insights into these subject areas. The book will be of value to all those interested in the above topics and in the overall themes of climate variability and global change.
This thesis presents a study of strong stratification and turbulence collapse in the planetary boundary layer, opening a new avenue in this field. It is the first work to study all regimes of stratified turbulence in a unified simulation framework without a break in the paradigms for representation of turbulence. To date, advances in our understanding and the parameterization of turbulence in the stable boundary layer have been hampered by difficulties simulating the strongly stratified regime, and the analysis has primarily been based on field measurements. The content presented here changes that paradigm by demonstrating the ability of direct numerical simulation to address this problem, and by doing so to remove the uncertainty of turbulence models from the analysis. Employing a stably stratified Ekman layer as a simplified physical model of the stable boundary layer, the three stratification regimes observed in nature- weakly, intermediately and strongly stratified-are reproduced, and the data is subsequently used to answer key, long-standing questions. The main part of the book is organized in three sections, namely a comprehensive introduction, numerics, and physics. The thesis ends with a clear and concise conclusion that distills specific implications for the study of the stable boundary layer. This structure emphasizes the physical results, but at the same time gives relevance to the technical aspects of numerical schemes and post-processing tools. The selection of the relevant literature during the introduction, and its use along the work appropriately combines literature from two research communities: fluid dynamics, and boundary-layer meteorology. |
You may like...
Harry Potter And The Philosopher's Stone
J. K. Rowling
Hardcover
(9)
Clive Barker and His Legacy - Theatre…
Paul Fryer, Nesta Jones
Hardcover
R2,854
Discovery Miles 28 540
Managing Your Mind - The Mental Fitness…
Gillian Butler, Tony Hope
Hardcover
R1,330
Discovery Miles 13 300
|