![]() |
![]() |
Your cart is empty |
||
Books > Earth & environment > Earth sciences > Meteorology
Shortlisted for the Financial Times and McKinsey Business Book of the Year Award, and one of The Observer's 'Thirty books to help us understand the world'. Are we really to blame for the climate crisis? Over 70 per cent of global emissions come from the same 100 organisations, but fossil-fuel companies have taken no responsibility themselves. Instead, they have waged a 30-year campaign to blame individuals. The result has been disastrous for our planet. In The New Climate War, renowned scientist Michael E. Mann argues that all is not lost. He draws the battle lines between the people and the polluters - fossil-fuel companies, right-wing plutocrats, and petro-states - and outlines a plan for forcing our governments and corporations to wake up and make real change.
An introduction to the principles of climate change science with an emphasis on the empirical evidence for climate change and a warming world. Additional readings are given at the end of each chapter. A list of "Things to Know" opens each chapter. Chapters are arranged so that the student is first introduced to the scientific method(s), examples of the use of the scientific method from other sciences drawn from the history of science with an emphasis on climate science. Climate science is treated in each chapter based on the premise of global warming. Chapter treatments on the atmosphere. biosphere, geosphere, hydrosphere, and anthroposphere and their inter-relationships are given.
Jesuits established a large number of astronomical, geophysical and
meteorological observatories during the 17th and 18th centuries and
again during the 19th and 20th centuries throughout the world. The
history of these observatories has never been published in a
complete form. Many early European astronomical observatories were
established in Jesuit colleges.
The field of physical oceanography has matured to a point where it is now conceivable to combine numerical models and observations via data assimilation in order to provide ocean prediction products on various spatial and time scales. As a result, many nations have begun large-scale efforts to provide routine products to the oceanographic community and started to develop operational oceanography systems. The Global Ocean Data Assimilation Experiment (GODAE) provides a framework for these efforts, i.e., a global system of observations, communications, modeling, and assimilation that will deliver regular, comprehensive information on the state of the oceans, in a way that will promote and engender wide utility and availability of this resource for maximum benefit to the community. The societal benefit of this experiment will be an increased knowledge of the marine environment and ocean climate, predictive skills for societal, industrial, and commercial benefit and tactical and strategic advantage, as well as the provision of a comprehensive and integrated approach to the oceans. We therefore considered it timely, given the international context, to bring together leading scientists, system developers, and application providers to present an integrated view of oceanography. The chapters collected in this volume cover a wide range of topics and summarize our present knowledge in ocean modeling, ocean observing systems, and data assimilation.
Our desire to understand the global carbon cycle and its link to the climate system represents a huge challenge. These overarching questions have driven a great deal of scientific endeavour in recent years: What are the basic oceanic mechanisms which control the oceanic carbon reservoirs and the partitioning of carbon between ocean and atmosphere? How do these mechanisms depend on the state of the climate system and how does the carbon cycle feed back on climate? What is the current rate at which fossil fuel carbon dioxide is absorbed by the oceans and how might this change in the future? To begin to answer these questions we must first understand the distribution of carbon in the ocean, its partitioning between different ocean reservoirs (the "solubility" and "biological" pumps of carbon), the mechanisms controlling these reservoirs, and the relationship of the significant physical and biological processes to the physical environment. The recent surveys from the JGOFS and WOCE (Joint Global Ocean Flux Study and World Ocean Circulation Ex periment) programs have given us a first truly global survey of the physical and biogeochemical properties of the ocean. These new, high quality data provide the opportunity to better quantify the present oceans reservoirs of carbon and the changes due to fossil fuel burning. In addition, diverse process studies and time-series observations have clearly revealed the complexity of interactions between nutrient cycles, ecosystems, the carbon-cycle and the physical envi ronment."
Written by a distinguished international scientist, who has made
fundamental contributions on the climatic relationship between air
pollution and meteorology, the book provides a compendium of
realistic examples of air pollution behaviour. After commencing
with a general survey he takes us through a study of diffusion
mechanisms including pollution from industrial chimneys and road
traffic. Air pollution meteorology covers boundary layer scaling,
pre-processing meteorological data, air quality management, urban
meteorology, and atmospheric chemistry (oxides of nitrogen are
central to ozone chemistry) with accounts of typical air pollution
episodes and a brief dictionary of air pollutants.
The term Little Ice Age' was originally used by glaciologists to describe the most recent major glacial advance of the Holocene. Subsequently, the Little Ice Age' has come to be associated with a period of advances of European glaciers between about 1450 to 1850, as well as with relatively cooler temperatures. The issue of whether or not this concept remains accurate is a major theme of many of the papers included in this volume. The main geographical focus is on the North Atlantic and European sectors, and includes research from a number of different palaeoclimatic fields. Examples are the use of documentary sources, early instrumental records, grain-harvest data, fossil-insect data, ice-core records, glacial evidence, lichenometry, synoptic climatology, and also the human dimensions of climate change. The papers presented reflect state-of-the-art knowledge, as well as thought-provoking new insights into these subject areas. The book will be of value to all those interested in the above topics and in the overall themes of climate variability and global change.
Climate is a paradigm of a complex system. Analysing climate data is an exciting challenge, which is increased by non-normal distributional shape, serial dependence, uneven spacing and timescale uncertainties. This book presents bootstrap resampling as a computing-intensive method able to meet the challenge. It shows the bootstrap to perform reliably in the most important statistical estimation techniques: regression, spectral analysis, extreme values and correlation. This book is written for climatologists and applied statisticians. It explains step by step the bootstrap algorithms (including novel adaptions) and methods for confidence interval construction. It tests the accuracy of the algorithms by means of Monte Carlo experiments. It analyses a large array of climate time series, giving a detailed account on the data and the associated climatological questions. "....comprehensive mathematical and statistical summary of time-series analysis techniques geared towards climate applications...accessible to readers with knowledge of college-level calculus and statistics." (Computers and Geosciences) "A key part of the book that separates it from other time series works is the explicit discussion of time uncertainty...a very useful text for those wishing to understand how to analyse climate time series." (Journal of Time Series Analysis) "...outstanding. One of the best books on advanced practical time series analysis I have seen." (David J. Hand, Past-President Royal Statistical Society)
The book discusses the ideas and creates a framework for building
toward a theory of paleoclimate. Using the rich and mounting array
of observational evidence of climatic changes from geology,
geochemistry, and paleontology, Saltzman offers a dynamical
approach to the theory of paleoclimate evolution and an expanded
theory of climate.
The global food security and sustainable agriculture are the key challenges before the scientific community in the present era of enhanced climate variability, rapidly rising population and dwindling resources. No part of the world is immune from meteorological extremes of one sort or another posing threat to the food security. Agrometeorology has to make most efficient use of the opportunities available in achieving the objectives of enhancing productivity and maintenance of sustainability. Increased awareness and technological advancement have provided opportunities to develop efficient agrometeorological services that can help cope with risks. These include improvements in weather forecasting, better understanding of the monsoon variability and crop-weather relationships, advances in operational agrometeorology and agrometeorological information systems, adaptation strategies to climate change and improved risk evaluation and management. This book based on an International Workshop held in New Delhi, India should be of interest to all organizations and agencies interested in agrometeorological applications.
The interactions of biogeochemical cycles influence and maintain
our climate system. Land use and fossil fuel emissions are
currently impacting the biogeochemical cycles of carbon, nitrogen
and sulfur on land, in the atmosphere, and in the oceans.
Glaciers in the Andes are particularly important natural archives of present and past climatic and environmental changes, in significant part because of the N-S trend of this topographic barrier and its influence on the atmospheric circulation of the southern hemisphere. Strong gradients in the seasonality and amount of precipitation exist between the equator and 30 Degrees S. Large differences in amount east and west of the Andean divide also occur, as well as a change from tropical summer precipitation (additionally modified by the seasonal shift of the circulation belts) to winter precipitation in the west wind belt (e. g. , Yuille, 1999; Garraud and Aceituno, 2001). The so-called 'dry axis' lies between the tropical and extra tropical precipitation regimes (Figure 1). The high mountain desert within this axis responds most sensitively to the smallest changes in effective moisture. An important hydro-meteorological feature on a seasonal to inter-annual time-scale is the occurrence of EN SO events, which strongly control the mass balance of glaciers in this area (e. g. , Wagnon et ai. , 2001; Francou et ai. , in press). The precipitation pattern is an important factor for the interpretation of climatic and environmental records extracted from ice cores, because much of this information is related to conditions at the actual time of precipitation, and this is especially so for stable isotope records. Several ice cores have recently been drilled to bedrock in this area. From Huascanin (Thompson et ai. , 1995), Sajama (Thompson et ai.
Nominated by Tsinghua University as an outstanding Ph.D. thesis, this book investigates the mechanical properties of unsaturated compacted clayey soil, the multi-field coupling consolidation theory of unsaturated soil and its application to a 261.5 m high earth-rockfill dam. It proposes a multi-field coupling analysis method of consolidation, and develops an efficient and practical finite element (FE) program for large-scale complex earth-rockfill dams. The book is primarily intended for researchers studying the multi-field coupling analysis of seepage consolidation.
The book addresses a weakness of current methodologies used in extreme value assessment, i.e. the assumption of stationarity, which is not given in reality. With respect to this issue a lot of new developed technologies are presented, i.e. influence of trends vs. internal correlations, quantitative uncertainty assessments, etc. The book not only focuses on artificial time series data, but has a close link to empirical measurements, in order to make the suggested methodologies applicable for practitioners in water management and meteorology.
The book drawing on the author's nearly half a century of energetic materials research experience intends to systematically review the global researches on liquid explosives. The book focuses on the study of the conception, explosion mechanism, properties and preparation of liquid explosives. It provides a combination of theoretical knowledge and practical examples in a reader-friendly style. The book is likely to be interest of university researchers and graduate students in the fields of energetic materials, blasting engineering and mining.
This book's main objective is to decipher for the reader the main processes in the atmosphere and the quantification of air pollution effects on humans and the environment, through first principles of meteorology and modelling/measurement approaches. The understanding of the complex sequence of events, starting from the emission of air pollutants into the atmosphere to the human health effects as the final event, is necessary for the prognosis of potential risk to humans from specific chemical compounds and mixtures of them. It fills a gap in the literature by providing a solid grounding in the first principles of meteorology and air pollution, making it particularly useful for undergraduate students. Its broad scope makes it a valuable text in many related disciplines, containing a comprehensive and integrated methodology to study the first principles of air pollution, meteorology, indoor air pollution, and human exposure. Problem-solving exercises help to reinforce concepts.
This book presents a novel approach in the field of global change
by presenting a comprehensive analysis of interhemispheric linkages
of climate, present and past, and their effects on human societies.
Global climate change - rapid, substantial and human induced - may have radical consequences for life on earth. The problem is a complex one, however, demanding a multi-disciplinary approach. A simple cost-benefit analysis cannot capture the essentials, nor can the issue be reduced to an emissions reduction game, as the Kyoto process tries to do. It is much more sensible to adopt an integrative approach, which reveals that global climate change needs to be considered as a spider in a web, a triggering factor for a range of other, related problems - land use changes, water supply and demand, food supply, energy supply, human health, air pollution, etc. But an approach like this, which takes account of all items of knowledge, known and uncertain, does not produce clear-cut, final and popular answers. It does provide useful insights, however, which will allow comprehensive and effective long-term climate strategies to be put into effect. Climate Change: An Integrated Perspective will appeal to a broad spectrum of readers. It is a useful source for the climate-change professionals, such as policy makers and analysts, natural and social scientists. It is also suitable for educationalists, students and indeed anyone interested in the fascinating world of multidisciplinary research underlying our approach to this global change issue.
Many satellites have recently been launched or are in preparation, which operate in the microwave to IR ranges, the main objective being to observe the earth's atmosphere or interstellar clouds. Analysis of the data they supply requires extensive laboratory work because we still only have sufficiently accurate data (line positions, intensities, and profiles) for only a few species. Furthermore, the observer community is making increasing calls for laboratory data, as new development open up new observational possibilities (such as submillimeter observation). Research on these subjects involves many different areas of specialisation in fields of research that generate a wealth of data. In Spectroscopy from Space the people responsible for field observations explain which results they are expecting from their measurements and how laboratory people can help them to analyse their satellite data. Laboratory spectroscopists explain why what they can do now, and what kinds of experiment and theoretical development that might undertake to meet the needs of the remote sensing community. The problems of distributing reliable laboratory data in a timely way are also addressed.
The Urban Climate aims to summarize analytical studies directed toward physical understanding of the rural-urban differences in the atmospheric boundary layer. Attempts to quantify conditions have met with some success. There is certainly a clear understanding of the physical relations that create the climatic differences of urbanized areas. Although some of the earlier classical studies are cited here, the emphasis is on the work done during the last decade and a half. This volume comprises 11 chapters, beginning with an introductory chapter discussing the literature surrounding the topic, its historical development, and the problem of local climate modification. The second chapter presents an assessment of the urban atmosphere on a synoptic and local scale, and examines the observational procedures involved. The following chapters then go on to discuss urban air composition; urban energy fluxes; the urban heat island; the urban wind field; models of urban temperature and wind fields; moisture, clouds, and hydrometeors; urban hydrology; special aspects of urban climate; and finally, urban planning. This book will be of interest to practitioners in the fields of meteorology, urban planning, and urban climatology.
Most studies of the impacts of climate change consider impacts in the future from anthropogenic climate change. Very few consider what the impacts of past climate change have been. History and Climate: Memories of the Future? contains 13 interdisciplinary chapters which consider impacts of change in different regions of the world, over the last millennium. Initial chapters assess evidence for the changes, while later chapters consider the impacts on agriculture, fisheries, health, and society. The book will be of interest to anyone working in the field of climate change and history.
This volume provides an up to date overview of climate variability during the 20th century in the context of natural and anthropogenic variability. It compiles a number of contributions to a workshop held in Gwatt, Switzerland, in July 2006 dealing with different aspects of climate change, variability, and extremes during the past 100 years. The individual contributions cover a broad range of topics. The volume fills a gap in this exciting field of research. |
![]() ![]() You may like...
Taking the Temperature of the Earth…
Glynn Hulley, Darren Ghent
Paperback
R3,047
Discovery Miles 30 470
Antarctic Climate Evolution
Fabio Florindo, Martin Siegert, …
Paperback
R4,003
Discovery Miles 40 030
The Indian Ocean and its Role in the…
Caroline Ummenhofer, Raleigh R. Hood
Paperback
R3,643
Discovery Miles 36 430
|