![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Organic chemistry
Interest in chemical entities capable of blocking or modifying cell metabolism ultimately goes back to the discovery of the structure of DNA in the 1950s. Understanding of the biochemical processes involved in cell metabolism rapidly led to the idea that compounds could be designed which might interfere with these processes, and thus could be used in the treatment of the diseases caused by viral infection. Since then, several classes of drugs have been discovered which depend for their effect on modification of the proper functioning of nucleic acids and, with the introduction of acyclovir for the treatment of Herpes infections, nucleoside analogues have become the cornerstone of antiviral chemotherapy. The success of the early nucleoside agents, the toxicity and metabolic instability of many nucleoside analogues, and the effects of viral pathogens on public health are driving the design, synthesis and evaluation of new nucleoside analogues, with much attention turning to nucleosides containing non natural' sugar analogues. This book focuses on the development of these agents, and draws together all the available material in an easily consulted form, which at the same time guides the reader into the research literature on the subject. Written primarily for the medicinal chemist, coverage includes both synthetic strategies and outline guidance on the main trends in biological activity. Particular attention is drawn to the comparison of synthetic routes to compounds with their natural analogues. Finally, the important antiviral activities of the compounds are treated, including anti-retrovirus, anti-hepadnavirus and anti-herpes virus properties. Written mainly for medicinal chemists inthe pharmaceutical industry and synthetic organic chemists in academe, this book will also be attractive to researchers in institutions focusing on cellular metabolism. Advanced students of organic chemistry will find the clear discussion of the synthetic strategies adopted in the development of these compounds a useful introduction to this exciting and challenging area.
It is hard to think of a protein in eukaryotic cells that does not undergo some type of posttranslational modification. The covalent attachment of l- ids to proteins, protein lipidation, occurs for a few thousand proteins. Several functions for protein lipidation are known. Protein lipids may target proteins to specific cellular membranes, they may serve as molecular switches that allow cytosol-to-membrane transfer, they may direct protein-protein compl- ation, and they may stabilize protein structure. In cases such as the fatty a- lation of intracellular loops of transmembrane proteins, the funtions of the protein lipidations are not known. This volume-Protein Lipidation Protocols-provides detailed meth- ologies for the study of these processes. Since this is a rapidly growing field, many new experimental techniques have been developing over the past few years. All of the experimental techniques described in this volume have emerged during this time. The editor has made a special effort to include only those techniques that have not been previously described in a "hands-on" f- mat.
Need help with organic chemistry? Get extra practice with this workbook If you're looking for a little extra help with organic chemistry than your Organic Chemistry I class offers, Organic Chemistry I Workbook For Dummies is exactly what you need! It lets you take the theories you're learning (and maybe struggling with) in class and practice them in the same format you'll find on class exams and other licensing exams, like the MCAT. It offers tips and tricks to memorize difficult concepts and shortcuts to solving problems. This reference guide and practice book explains the concepts of organic chemistry (such as functional groups, resonance, alkanes, and stereochemistry) in a concise, easy-to-understand format that helps you refine your skills. It also includes real practice with hundreds of exam questions to test your knowledge. Walk through the answers and clearly identify where you went wrong (or right) with each problem Get practical advice on acing your exams Use organic chemistry in practical applications Organic Chemistry I Workbook For Dummies provides you with opportunities to review the material and practice solving problems based on the topics covered in a typical Organic Chemistry I course. With the help of this practical reference, you can face down your exam and pass on to Organic Chemistry II with confidence!
Despite the long association of organohalogen compounds with human activities, nature is the producer of nearly 5,000 halogen-containing chemicals. Once dismissed as accidents of nature or isolation artifacts, organohalogen compounds represent an important and ever growing class of natural products, in many cases exhibiting exceptional biological activity. Since the last comprehensive review in 1996 (Vol. 68, this series), there have been discovered an additional 2,500 organochlorine, organobromine, and other organohalogen compounds. These natural organohalogens are biosynthesized by bacteria, fungi, lichen, plants, marine organisms of all types, insects, and higher animals including humans. These compounds are also formed abiogenically, as in volcanoes, forest fires, and other geothermal events.In some instances, natural organohalogens are precisely the same chemicals that man synthesizes for industrial use, and some of the quantities of these natural chemicals far exceed the quantities emitted by man.
Volume Four discusses the applications of radiation curing and provides a synopsis of the latest research in coatings; graphic arts; microelectronics; optical fibres; adhesives; 3D machining; membranes and holographic optical elements as well as considering the worldwide trends in the market.
This book evolved from the 5th School of Environmental Research entitled Persistent Pollution Past, Present and Future," which has set a focus on Persistent Organic Pollutants (POPs), heavy metals and aerosols. -reconstruction of past changes based on the scientific analysis of natural archives such as ice cores and peat deposits, -evaluation of the present environmental state by the integration of measurements and modelling and the establishment of cause-effect-patterns, -assessment of possible environmental future scenarios including emission and climate change perspectives.
In this book importance of Asymmetric Synthesis are given with examples. It has underlined concepts developed starting with basic principles of stereochemistry. It is based on drug required, four methodologies are given. The text is written in a simple and lucid style. The topics have been dealt with systematically, diagrammatically and in a lucid language. The book is based on three important principles. First, concepts and terminology used in asymmetric synthesis, second, the four types of asymmetric synthesis and third, applications of asymmetric synthesis. Students, teachers and researchers need to understand the methodology of asymmetric synthesis, because of the crucial role this plays in the organic synthesis, especially in synthesis of drugs. An understanding of different methods of asymmetric synthesis is essential for the planning of drug synthesis using the knowledge of QSAR.
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.
Spectroscopic Properties of Inorganic and Organometallic Compounds provides a unique source of information on an important area of chemistry. Divided into sections mainly according to the particular spectroscopic technique used, coverage in each volume includes: NMR (with reference to stereochemistry, dynamic systems, paramagnetic complexes, solid state NMR and Groups 13-18); nuclear quadrupole resonance spectroscopy; vibrational spectroscopy of main group and transition element compounds and coordinated ligands; and electron diffraction. Reflecting the growing volume of published work in this field, researchers will find this Specialist Periodical Report an invaluable source of information on current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr
The Mathematics and Topology of Fullerenes presents a comprehensive overview of scientific and technical innovations in theoretical and experimental studies. Topics included in this multi-author volume are: Clar structures for conjugated nanostructures; counting polynomials of fullerenes; topological indices of fullerenes; the wiener index of nanotubes; toroidal fullerenes and nanostars; C60 Structural relatives: a topological study; local combinatorial characterization of fullerenes; computation of selected topological indices of C60 and C80 Fullerenes via the Gap Program; 4valent- analogues of fullerenes; a detailed atlas of Kekule structures of C60. The Mathematics and Topology of Fullerenes is targeted at advanced graduates and researchers working in carbon materials, chemistry and physics.
The 105th volume in this series for organic chemists in academia and industry presents critical discussions of widely used organic reactions or particular phases of a reaction. The material is treated from a preparative viewpoint, with emphasis on limitations, interfering influences, effects of structure and the selection of experimental techniques. The work includes tables that contain all possible examples of the reaction under consideration. Detailed procedures illustrate the significant modifications of each method.
Contents: Yves Canac and Remi Chauvin: Neutral eta1-carbon ligands: beyond carbon monoxide; Esteban P. Urriolabeitia: Ylide Ligands; Wolfgang Petz and Gernot Frenking: Carbodiphosphoranes and related ligands; Mareike C. Jahnke and F. Ekkehardt Hahn: Chemistry of N-Heterocyclic Carbene Ligands; Tsuyoshi Kato, Eddy Maerten, Antoine Baceiredo: Non-NHCs stable singlet carbene ligands; Victorio Cadierno, Sergio E. Garc a-Garrido: All-Carbon-Substituted Allenylidene and Related Cumulenylidene Ligands; Victorio Cadierno, Sergio E. Garc a-Garrido: Heteroatom-Conjugated Allenylidene and Related Cumulenylidene Ligands.
Saponins are complex molecules made up of sugars linked to a triterpenoid or a steroid or a steroidal alkaloid. These natural products are attracting much attention in recent years because of the host of biological activities they exhibit. The diversity of structural features, the challenges of isolation because of their occurrence as complex mixtures, the pharmacological and biological activities still to be discovered, and the prospect of commercialization - these all are driving the study of saponins. Triterpenoid saponins are dominating constituents of this class and occur widely throughout the plant kingdom including some human foods e. g. beans, spinach, tomatoes, and potatoes, and animal feed e. g. alfalfa and clover. Saponins were initially a rather neglected* area of research primarily because of great difficulties in their isolation and characterization. With the advent of more sophisticated methods of isolation and structure elucidation through the last two decades, there has been increased interest in these natural products. Besides structure determination, research activities are now moving forward to clarify structure-activity relationships. Our previous reviews on triterpenoid saponins (l, 2) covered literature from 1979 to mid-1989. The literature on triterpenoid saponins up to 1988 has also been covered by two reviews by HILLER et at. (3, 4). This review incorporates newer trends in isolation and structure determination of triterpenoid saponins, new triterpenoid saponins isolated and biological properties of these products reported during the period late 1989-mid 1996. 2.
Photosensitization of Porphyrins and Phthalocyanines covers the scentific background to porphyrins and phthalocyanines, and applications of the compounds, especially for the application for photosensitization. It also has a review of advances in research and applications in this field.
This book presents the state of the art in the synthesis very complex saccharide structures, written by leading scientists at the forefront of this rapidly growing field. Reflecting the particular significance in recent years of efficient and selective procedures employing enzymes for preparative purposes in the carbohydrate field, a major proportion of the articles focus on these biocatalytic methods. In addition, recent strategies for the construction of unusual carbohydrates structures employing novel and creative methodologies are highlighted. Further, particular emphasis is placed on very complex saccharide structures as well as on special solutions to problems that are particularly challenging.
Molecular Logic Gates and Luminescent Sensors Based on Photoinduced Electron Transfer, by A. Prasanna de Silva and S. Uchiyama; Luminescent Chemical Sensing, Biosensing, and Screening Using Upconverting Nanoparticles, by D. E. Achatz, R. Ali, and O. S. Wolfbeis; Luminescence Amplification Strategies Integrated with Microparticle and Nanoparticle Platforms, by S. Zhu, T. Fischer, W. Wan, A. B. Descalzo, and K. Rurack; Luminescent Chemosensors Based on Silica Nanoparticles, by S. Bonacchi, D. Genovese, R. Juris, M. Montalti, L. Prodi, E. Rampazzo, M. Sgarzi, and N. Zaccheroni; Fluorescence Based Sensor Arrays, by R. Paolesse, D. Monti, F. Dini, and C. Di Natale; Enantioselective Sensing by Luminescence, by A. Accetta, R. Corradini, and R. Marchelli
Should the production and use of chlorine and all chlorinated organic compounds be halted, in view of their adverse effects on the environment and human health? Those in favour argue that certain chlorinated compounds (PCBs, DDT, CFCs, etc.) have large negative environmental effects. The use of chlorine in disinfectants leads to the production of chloroform, while bulk products (PVC) contribute to the production of chlorinated dibenzo-p-dioxins and dibenzofurans when they are burned. Those against argue that chlorine and many chlorinated compounds are essential in the control of human health (the prevention of disease transmitted through drinking water that has not been disinfected), and that chlorinated compounds are indispensable intermediates in many production processes, representing a vast economic value. But such discussions often ignore the fact that Nature contributes significantly to the production of chlorinated organic compounds. More than 1000 such compounds are known, and their contribution to the biogeochemical cycling of chlorine is underestimated. Chlorine is organically bound in large quantities to humic materials, and natural production mechanisms are known for low molecular weight compounds (methyl chloride, chloroform, chlorinated dibenzo-p-dioxins and dibenzofurans). The role of these compounds in the environment is largely unknown. Naturally-Produced Organohalogens gives a complete overview of the present state of knowledge on the subject, giving a much needed balance to the argument sketched out above.
The Chemistry of Heterocyclic Compounds, since its inception, has been recognized as a cornerstone of heterocyclic chemistry. Each volume attempts to discuss all aspects - properties, synthesis, reactions, physiological and industrial significance - of a specific ring system. To keep the series up-to-date, supplementary volumes covering the recent literature on each individual ring system have been published. Many ring systems (such as pyridines and oxazoles) are treated in distinct books, each consisting of separate volumes or parts dealing with different individual topics. With all authors are recognized authorities, the Chemistry of Heterocyclic Chemistry is considered worldwide as the indispensable resource for organic, bioorganic, and medicinal chemists.
Corinna Reisinger has developed a new organocatalytic asymmetric epoxidation of cyclic and acyclic , -unsaturated ketones. In this thesis, Corinna documents her methodology, using primary amine salts as catalysts, and hydrogen peroxide as an inexpensive and environmentally benign oxidant. She describes the unprecedented and powerful catalytic asymmetric hydro peroxi dation of , -enones, a process which produces optically active five-membered cyclic peroxyhemiketals in a single operation. She also proves the versatility and synthetic value of the cyclic peroxyhemiketals by converting them into highly enantioenriched acyclic and cyclic aldol products. Currently, these cyclic aldol products are inaccessible by any other synthetic means. Furthermore, cyclic peroxyhemiketals are precursors to optically active 1,2-dioxolanes which are of biological relevance. This work is a breakthrough in the field of asymmetric epoxidation chemistry and outlines the most efficient method in the literature for generating highly enantioselective cyclic epoxyketones known to date.
This text addresses critical topics in the expanding market and production for lipids. It combines novel and traditional methods from technological and biological perspectives to achieve the most effective pathways for production of modified lipids. The book is organized into three sections exploring development, new production methods and successful products and uses.
This volume of Modern Aspects contains seven chapters. The major topics covered in the first six chapters of this volume include fundamentals of solid state electrochemistry; kinetics of electrochemical hydrogen entry into metals and alloys; oxidation of organics; fuel cells; electrode kinetics of trace-anion catalysis; nano structural analysis. The last chapter is a corrected version of chapter four from Volume 35. Faisal M. AI-faqeer and Howard W. Pickering begin the first chapter by going back to 1864 and Cailletet who found that some hydrogen evolved and was absorbed by iron when it was immersed in dilute sulfuric acid. The absorption of hydrogen into metals and alloys can lead to catastrophic failures of structures. They discuss the kinetics of electrochemical hydrogen entry into metals and alloys. In chapter three, Clyde L. Briant reviews the electrochemistry, corrosion and hydrogen embrittlement of unalloyed titanium. He begins by reviewing the basic electrochemistry and general corrosion of titanium. He also discusses pitting and galvanostatic corrosion followed by a review of hydrogen embrittlement emphasizing the formation of hydrides and the effect of these on titanium's mechanical properties. Christos Comninellis and Gy6rgy F6ti discuss the oxidative electrochemical processes of organics in chapter three. They begin by defining direct and indirect electrochemical oxidation of organics. They introduce a model that allows them to distinguish between active (strong) and non-active (weak) anodes. Different classes of organic compounds are used for kinetic models of organic oxidation at active and non-active type anodes.
The consumption of petroleum has surged during the 20th century, at least partially because of the rise of the automobile industry. Today, fossil fuels such as coal, oil, and natural gas provide more than three quarters of the world's energy. Unfortunately, the growing demand for fossil fuel resources comes at a time of diminishing reserves of these nonrenewable resources. The worldwide reserves of oil are sufficient to supply energy and chemicals for only about another 40 years, causing widening concerns about rising oil prices. The use of biomass to produce energy is only one form of renewable energy that can be utilized to reduce the impact of energy production and use on the global environment. Biomass can be converted into three main products such as energy, biofuels and fine chemicals using a number of different processes. Today, it is a great challenge for researchers to find new environmentally benign methodology for biomass conversion, which are industrially profitable as well. This book focuses on the conversion of biomass to biofuels, bioenergy and fine chemicals with the interface of biotechnology, microbiology, chemistry and materials science. An international scientific authorship summarizes the state-of-the-art of the current research and gives an outlook on future developments.
G.HAINNAUX Departement Milieu et Activites Agricoles, Centre ORSTOM, 911 Avenue d' Agropolis, B.P. 5045, 34032 Montpellier Cedex , France. Solid state fermentation, popularly abbreviated as SSF, is currently investigated by many groups throughout the world. The study of this technique was largely neglected in the past in European and Western countries and there is now a high demand for SSF, meaning in food, environment, agricultural, phannaceutical and many other biotechnological applications. It gives me satisfaction to note that the importance of this technique was realised at my department way back in 1975 since then, our team has put concentrated efforts on developing this technique. xvii Foreword Advances in Solid State Fermentation Foreword M. PUYGRENIER Agropolis Valorisation, Avenue d' Agropolis, 34394 Montpellier Cedex 5, France. On the name of the Scientific Community, I would like to express the wish that this International Symposium on SSF should be successful. Solid State Fermentation is part of biotechnology research. It consists on seeding solid culture medium with bacteria or fungi (filamentous or higher) and on producing, in this medium (solid components and exudates) metabolites and high value products. In fact, this process is very old. In older industries such the food and agricultural, this technique has been extensively used. An example of this is the production of pork sausages and Roquefort cheese. Pharmaceutical industry could make extensive use of SSF in the production of secondary metabolites of many kinds and development in this direction is soon expected.
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.
Revised and expanded for the second edition, this text details the principal concepts and developments in wood science, chemistry and technology. It includes new chapters on the chemical synthesis of cellulose and its technology, preservation of wood resources and the conservation of waterlogged wood. |
![]() ![]() You may like...
ADR 2017: European Agreement Concerning…
United Nations. Economic Commission for Europe
Paperback
Economic Impacts of Intelligent…
E. Bekiaris, Y. J. Nakanishi
Hardcover
R5,241
Discovery Miles 52 410
Principles Of The Law Of Property In…
H. Mostert, J. Pienaar, …
Paperback
R677
Discovery Miles 6 770
|