![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Organic chemistry
Dear Readers, Since the ground-breaking, Nobel-prize crowned work of Heeger, MacDiarmid, and Shirakawa on molecularly doped polymers and polymers with an alternating bonding structure at the end of the 1970s, the academic and industrial research on hydrocarbon-based semiconducting materials and devices has made encouraging progress. The strengths of semiconducting polymers are currently mainly unfolding in cheap and easily assembled thin ?lm transistors, light emitting diodes, and organic solar cells. The use of so-called "plastic chips" ranges from lightweight, portable devices over large-area applications to gadgets demanding a degree of mechanical ?exibility, which would overstress conventionaldevices based on inorganic,perfect crystals. The ?eld of organic electronics has evolved quite dynamically during the last few years; thus consumer electronics based on molecular semiconductors has gained suf?cient market attractiveness to be launched by the major manufacturers in the recent past. Nonetheless, the numerous challenges related to organic device physics and the physics of ordered and disordered molecular solids are still the subjects of a cont- uing lively debate. The future of organic microelectronics will unavoidably lead to new devi- physical insights and hence to novel compounds and device architectures of - hanced complexity. Thus, the early evolution of predictive models and precise, computationally effective simulation tools for computer-aided analysis and design of promising device prototypes will be of crucial importance.
R. W. DYSON There will be few readers of this book who are not aware of the contribution that polymers make to modern life. They are to be seen around the home, at work, in transport and in leisure pursuits. They take many forms which include plastic mouldings and extrusions, plastic film and sheet, plastic laminates (fibreglass and formica), rubber gloves, hoses, tyres and sealing rings, fibres for textiles and carpets and so on, cellular products for cushioning and thermal insulation, adhesives and coating materials such as paints and varnishes. The majority of these polymers are synthetic and are derived from oil products. The most important of these in terms of tonnage used are polymers based upon styrene, vinyl chloride, ethylene, propylene and butadiene among plastics and rubber materials, and nylons, polyethyleneterephthalate and poly acrylonitrile among fibres. The total amount of these polymers used each year runs into millions of tonnes. These polymers are sometimes known as commodity polymers because they are used for everyday artefacts. They are available in many grades and formats to meet a variety of applications and processing techniques. The properties can be adjusted by using additives such as heat and light stabilizers, plasticizers, and reinforcing materials. Often, grades are specially designed and formulated to meet particular requirements and, in a sense, these might be regarded as specialities. Much has been written about these materials elsewhere and they are not the concern of this book.
This excellent volume will serve as an indispensable reference and source book for process design, tool and production engineers in composite manufacturing. It provides the reader with a comprehensive treatment of the theory of machining as it applies to fiber reinforced polymer composites. It covers the latest technical advances in the area of machining and tooling, and discusses the applications of fiber reinforced polymer composites in the aircraft and automotive industries.
How can a scientist or engineer synthesize and utilize polymers to solve our daily problems? This introductory text, aimed at the advanced undergraduate or graduate student, provides future scientists and engineers with the fundamental knowledge of polymer design and synthesis to achieve specific properties required in everyday applications. In the first five chapters, this book discusses the properties and characterization of polymers, since designing a polymer initially requires us to understand the effects of chemical structure on physical and chemical characteristics. Six further chapters discuss the principles of polymerization reactions including step, radical chain, ionic chain, chain copolymerization, coordination and ring opening. Finally, material is also included on how commonly known polymers are synthesized in a laboratory and a factory. This book is suitable for a one semester course in polymer chemistry and does not demand prior knowledge of polymer science.
The basic idea of the NATO International Exchange Program for funding an Advanced Research Workshop on "Chemical Reactions in Organic and Inorganic Constrained Systems" was to contribute to a better under standing of the influence of configurational constraints on reaction mechanisms, as imposed on reagents by organic or inorganic templates. The original character of the Workshop was to bring together organic and inorganic chemists with this common interest in order to promote the exchange of ideas and, eventually, interdisciplinary research. All the participants to the Workshop agreed that the discussions were stimulating and fruitful. The judgement of the reader of the Proceedings may perhaps be more restrictive because the director (Professor J. J. FRIPIAT) and co-director (Professor P. SINAY), faced with the impossible task of covering such an enormous domain, were obliged to select, somewhat arbitrarily, a limited number of topics which seemed to them to be the most important. Their choice may be discussed and there surely are important gaps, with fields which were not considered. However, both organisers believe that, within the limited span of time and number of contributors, most of the exciting areas were addressed. Dr. WARNHEIM was kind enough to write a commentary on the Workshop; his summary, written with the hindsight of a few weeks, supports, we believe, this opinion. Dr. SETTON has accepted the burden of collecting and shaping (not selectively) the manuscripts. This book would not be what it is without his efficient contribution as scientific secretary of the Workshop."
Carbohydrate Chemistry provides review coverage of all publications relevant to the chemistry of monosaccharides and oligosaccharides in a given year. The amount of research in this field appearing in the organic chemical literature is increasing because of the enhanced importance of the subject, especially in areas of medicinal chemistry and biology. In no part of the field is this more apparent than in the synthesis of oligosaccharides required by scientists working in glycobiology. Clycomedicinal chemistry and its reliance on carbohydrate synthesis is now very well established, for example, by the preparation of specific carbohydrate- based antigens, especially cancer-specific oligosaccharides and glycoconjugates. Coverage of topics such as nucleosides, amino-sugars, alditols and cyclitols also covers much research of relevance to biological and medicinal chemistry. Each volume of the series brings together references to all published work in given areas of the subject and serves as a comprehensive database for the active research chemist Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis.
Mechanical Properties of Single Molecules and Polymer Aggregates Rudiger Berger, Kurt Binder, Gregor Diezemann, Jurgen Gauss, Mark Helm, Katharina Landfester, Wolfgang Paul (Halle), Peter Virnau. Optical Properties of Individual Molecular Aggregates and Nano Particles Thomas Basche, Hans-Jurgen Butt, Gregor Diezemann, Jurgen Gauss, Klaus Mullen, Harald Paulsen, Carsten Sonnichsen, Rudolf Zentel. Structure Formation of Polymeric Building Blocks I: Self-assembly of Copolymers Kurt Binder, Holger Frey, Andreas Kilbinger (Univ. Fribourg), Ute Kolb, Michael Maskos (IMM Mainz), Wolfgang Paul (Univ. Halle), Hans Wolfgang Spiess. Structure Formation of Polymeric Building Blocks II: Complex Polymer Architectures Kurt Binder, Hans Jurgen Butt, Angelika Kuhnle, Klaus Mullen, Wolfgang Paul (Univ. Halle), Erwin Schmidt, Manfred Schmidt, Hans Wolfgang Spiess, Thomas Vilgis. Structure Formation of Polymeric Building Blocks III: Polymer Complexes in Biological Applications Kurt Kremer, Heiko Luhmann, Christine Peter, Friederike Schmid, Erwin Schmidt, Manfred Schmidt, Eva Sinner (Univ. of Natural Resources, Vienna), Tanja Weil (Univ. Ulm)."
This book covers broad aspects of the chemistry of -stacked polymers and low-molecular-weight molecules, from synthesis through theory. It is intended for graduate students and researchers in academia and industry and consists of chapters written by renowned scientists who have made significant contributions to this field in the past decade. -Stacked polymers and low-molecular-weight molecules are expected to replace main-chain conjugated polymers such as polyacetylenes and polythiophenes as organic conducting and energy-transferring substances that are important as materials for photo-electronic applications. -Stacked polymers and molecules have significant advantages over main-chain conjugated polymers, i.e., high solubility in solvents, large freedom in molecular design, and colorless nature.
This thesis deals with the processes that create ordered assemblies from disordered nanoparticles. Ordered packings of nanoscale particles can exhibit unusual properties. This work investigates the self-assembly of such particles, a process widely employed for the generation of ordered structures, but not yet well understood. In situ methods are used to observe the assembly of sub-micron polymer lattices and sub-10 nm gold particles into crystalline monolayers and aggregates. On the basis of these results, the book develops new models that describe the competition between different influences, such as thermal agitation and directional forces. It suggests necessary criteria that lead to the emergence of order.
This work describes novel, effective hydrogen-bond (HB) donor catalysts based on a known bifunctional tertiary amine-thiourea, a privileged structure, which has been proven to be one of the most widely used organocatalysts. These HB donor catalysts derived from quinazoline and benzothiadiazine were initially synthesized as novel HB donors with their HB-donating abilities being measured by analytical methods. They were found to be effective for a variety of asymmetric transformations including Michael reactions of a, b- unsaturated imides and hydrazination reactions of 1,3-dicarbonyl compounds. Thiourea catalysts that have an additional functional group are also described. Specifically, thioureas that bear a hydroxyl group were synthesized and subsequently used as novel bifunctional organocatalysts for catalytic, asymmetric Petasis-type reactions involving organoboronic acids as nucleophiles. These addition reactions were difficult to achieve using existing organocatalysts. One of the developed catalytic methods can be applied to the synthesis of biologically interesting peptide- derived compounds possessing unnatural vinyl glycine moieties. These findings introduce new criteria required for the development of organocatalysts for asymmetric reactions, thus making a significant contribution to the field of organocatalysis.
For readers at least moderately familiar with the theory of analyzing volatile aroma compounds, an introduction to the wide range of techniques for analyzing chiral molecules. They include chiroptical methods such as polarimetry, optical rotation dispersion and circular dichroism; liquid, gas, super
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued.
The next article includes the description of the rich chemistry of phosphinines, including azaphosphinines. The sixth article deals with synthetic approaches to different types of 1- heterophosphacyclanes, including four-, five-, and six-membered P-heterocycles. The next two articles cover the chemistry of phosphorus containing mac- cycles. The phosphorus containing calixarenes have attracted much attention in recent years due to their various functions such as metal cations binding, catalysis, molecular recogination, and bioactivity. Likewise, other phosphorus-containing macrocycles, cryptands, and dendrimers find various uses in analytical chemistry and biochemistry. We hope to include the following articles in the second volume on phosphorous heterocycles: Diazaphospholes Selected phosphorous heterocycles containing a stereogenic phosphorus Heterophenes carrying phosphorus functional groups as key structures The synthesis and chemistry of the phospholane ring system Synthesis and bioactivity of 2,5-dihydro-1,2-oxaphosphole-2-oxide derivatives Recent developments in the chemistry of N-heterocyclic phosphines. I would be failing in my duty if I do not express my sincere thanks to the people at Springer, particularly Ms. Birgit Kollmar-Thoni and Ms. Ingrid Samide, for coordinating the project with great dedication.
This book reports on origin and history of polycondensation chemistry beginning in the first half of the 19th century. Furthermore, history and inventors of the most important polycondensates, such as Nylons, PET or polycarbonates, are described. The classical theory of step-growth polymerizations is discussed in the light of the latest experimental and theoretical results. Particular emphasis is laid on the role of cyclization reactions. Special categories of polycondensation processes are discussed in more detail: syntheses of hyperbranched and multicyclic polymers, non-stoichiometric polycondensations, interfacial polycondensations, solid state polycondensations, condensative chain polymerizations etc.
General The making and breaking of carbon-metal bonds is fundamental to all the p- cesses of organometallic chemistry and moreover plays a significant role in - mogeneous as well as heterogeneous catalysis. This rather blunt statement - phasises the extent to which a proper understanding of the structure, energetics and reactivity of C-M bonds is at the core of the discipline. In order to accept it, a proper definition of the terms involved is required. Quite simply we define the metal-carbon bond in its broadest sense to embrace carbon linked to transiti- metals, lanthanides and actinides, and main group metals. We do not dist- guish between formally covalent single or multiple bonding on the one hand and q-bonding on the other. In the studies to be described in the following chapters, the emphasis will be on transition metal complexes and insofar as the fun- mentals come under scrutiny, simple metal alkyls or related species (metal al- nyl, alkynyl, aryl, or allyl) will play an emphatic part. The central role of metal alkyls and their congeners and especially the role of their metal carbon linkage in homogeneous catalysis may be appreciated by considering some key reaction steps leading to their formation or breakdown. There follows a few prominent examples of transition metal mediated stoichiometric or catalytic processes: - In homogeneous hydrogenation of double bonds, the stepwise reaction of an q2-coordinated alkene with dihydrogen gives first an alkyl metal hydride, and then the decoordinated alkane by elimination.
In the last decade there have been numerous advances in the area of rhodium-catalyzed hydroformylation, such as highly selective catalysts of industrial importance, new insights into mechanisms of the reaction, very selective asymmetric catalysts, in situ characterization and application to organic synthesis. The views on hydroformylation which still prevail in the current textbooks have become obsolete in several respects. Therefore, it was felt timely to collect these advances in a book. The book contains a series of chapters discussing several rhodium systems arranged according to ligand type, including asymmetric ligands, a chapter on applications in organic chemistry, a chapter on modern processes and separations, and a chapter on catalyst preparation and laboratory techniques. This book concentrates on highlights, rather than a concise review mentioning all articles in just one line. The book aims at an audience of advanced students, experts in the field, and scientists from related fields. The didactic approach also makes it useful as a guide for an advanced course.
The outlook of organic synthesis has changed many times during its tractable history. The initial focus on the synthesis of substances typical of living matter, exemplified by the first examples of organic chemistry through the synthesis of urea from inorganic substances by Liebig, was accepted as the birth of organic chemistry, and thus also of organic synthesis. Although the early developments in organic synthesis closely followed the pursuit of molecules typical in nature, towards the end of the 19th century, societal pressures placed higher demands on chemical methods appropriate for the emerging age of industrialization. This led to vast amounts of information being generated through the discovery of synthetic reactions, spectroscopic techniques and reaction mechanisms. The basic organic functional group transformations were discovered and improved during the early part of this century. Reaction mechanisms were elucidated at a growing pace, and extremely powerful spectroscopic tools, such as infrared, nuclear magnetic resonance and mass spectrometry were introduced as everyday tools for a practising organic chemist. By the 1950s, many practitioners were ready to agree that almost every molecule could be syn thesized. Some difficult stereochemical problems were exceptions; for example Woodward concluded that erythromycin was a "hopelessly complex target." This frustration led to a hectic phase of development of new and increasingly more ingenious protecting group strategies and functional group transformations, and also saw the emergence of asymmetric synthesis."
This book presents an essential overview of beta-lactams and their medicinal value and use in the preparation of other biologically active compounds. Written by internationally respected authors, the individual chapters explore beta-lactams' synthesis, their mechanism of formation, biological effects, and function as base materials for other heterocycles of major importance.
A renewed interest in aliphatic polyesters has resulted in developing materials important in the biomedical and ecological fields. Mainly materials such as PLA and PCL homopolymers have so far been used in most applications. There are many other monomers which can be used. Different molecular structures give a wider range of physical properties as well as the possibility of regulating the degradation rate. By using different types of initiators and catalysts, ring-opening polymerization of lactones and lactides provides macromolecules with advanced molecular architectures. In the future, new degradable polymers should be able to participate in the metabolism of nature. Some examples of novel polymers with inherent environmentally favorable properties such as renewability and degradability and a series of interesting monomers found in the metabolisms and cycles of nature are given.
Organophosphorus Chemistry provides a comprehensive annual review of the literature. Coverage includes phosphines and their chalcogenides, phosphonium salts, low coordination number phosphorus compounds, penta- and hexa-coordinated compounds, tervalent phosphorus acids, nucleotides and nucleic acids, ylides and related compounds, and phosphazenes. The series will be of value to research workers in universities, government and industrial research organisations, whose work involves the use of organophosphorus compounds. It provides a concise but comprehensive survey of a vast field of study with a wide variety of applications, enabling the reader to rapidly keep abreast of the latest developments in their specialist areas. Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.
The development of "tailormade" electrode surfaces using electroactive polymer films has been one of the most active and exciting areas of electrochemistry over the last 15 years. The properties of these materials have been examined by a wide range of scientists from a variety of perspectives, and now electroactive polymer research is considered to be a reasonably mature area of research endeavor. Much is now understood about the fundamental mechanism of conduction in these materials. A wide range of electrochemical techniques may be used to probe the conductivity processes in these materials, and more recently, a number of in situ spectroscopic techniques have been used to further elucidate the structure of these materials. The in situ spectroscopies and allied techniques have also been used to obtain correlations between structure and redox activity. The applications found for electroactive polymers are many and varied, and range from thin film amperometric chemical and biological sensors, electrocatalytic systems, drug delivery devices, and advanced battery systems through to molecular electronic devices. The research literature on electroactive polymers is truly enormous and can daunt even the most hardened researcher. The vast quantity of material reported in the literature can also intimidate beginning graduate students. Hence the present book. The original idea for this book arose as a result of a series of lectures on chemically modified eiectrodes and electroactive polymers given by the writer to final-year undergraduates at Trinity College Dublin.
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.
Proceedings of a technical conference held in Ellenville, New York, November 10-12, 1982 |
![]() ![]() You may like...
Another Republic - 17 European and South…
Charles Simic, Mark Strand
Paperback
R385
Discovery Miles 3 850
International Brigade Against Apartheid…
Ronnie Kasrils, Muff Andersson, …
Paperback
Quality Assurance of Postharvest Stored…
Fernando Plath
Hardcover
This Is How It Is - True Stories From…
The Life Righting Collective
Paperback
|