![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Organic chemistry
Photosensitization of Porphyrins and Phthalocyanines covers the scentific background to porphyrins and phthalocyanines, and applications of the compounds, especially for the application for photosensitization. It also has a review of advances in research and applications in this field.
Should the production and use of chlorine and all chlorinated organic compounds be halted, in view of their adverse effects on the environment and human health? Those in favour argue that certain chlorinated compounds (PCBs, DDT, CFCs, etc.) have large negative environmental effects. The use of chlorine in disinfectants leads to the production of chloroform, while bulk products (PVC) contribute to the production of chlorinated dibenzo-p-dioxins and dibenzofurans when they are burned. Those against argue that chlorine and many chlorinated compounds are essential in the control of human health (the prevention of disease transmitted through drinking water that has not been disinfected), and that chlorinated compounds are indispensable intermediates in many production processes, representing a vast economic value. But such discussions often ignore the fact that Nature contributes significantly to the production of chlorinated organic compounds. More than 1000 such compounds are known, and their contribution to the biogeochemical cycling of chlorine is underestimated. Chlorine is organically bound in large quantities to humic materials, and natural production mechanisms are known for low molecular weight compounds (methyl chloride, chloroform, chlorinated dibenzo-p-dioxins and dibenzofurans). The role of these compounds in the environment is largely unknown. Naturally-Produced Organohalogens gives a complete overview of the present state of knowledge on the subject, giving a much needed balance to the argument sketched out above.
This book presents the state of the art in the synthesis very complex saccharide structures, written by leading scientists at the forefront of this rapidly growing field. Reflecting the particular significance in recent years of efficient and selective procedures employing enzymes for preparative purposes in the carbohydrate field, a major proportion of the articles focus on these biocatalytic methods. In addition, recent strategies for the construction of unusual carbohydrates structures employing novel and creative methodologies are highlighted. Further, particular emphasis is placed on very complex saccharide structures as well as on special solutions to problems that are particularly challenging.
Molecular Logic Gates and Luminescent Sensors Based on Photoinduced Electron Transfer, by A. Prasanna de Silva and S. Uchiyama; Luminescent Chemical Sensing, Biosensing, and Screening Using Upconverting Nanoparticles, by D. E. Achatz, R. Ali, and O. S. Wolfbeis; Luminescence Amplification Strategies Integrated with Microparticle and Nanoparticle Platforms, by S. Zhu, T. Fischer, W. Wan, A. B. Descalzo, and K. Rurack; Luminescent Chemosensors Based on Silica Nanoparticles, by S. Bonacchi, D. Genovese, R. Juris, M. Montalti, L. Prodi, E. Rampazzo, M. Sgarzi, and N. Zaccheroni; Fluorescence Based Sensor Arrays, by R. Paolesse, D. Monti, F. Dini, and C. Di Natale; Enantioselective Sensing by Luminescence, by A. Accetta, R. Corradini, and R. Marchelli
Progress in Medicinal Chemistry, Volume 61 provides a review of eclectic developments in medicinal chemistry, with each chapter written by an international board of authors.
This text addresses critical topics in the expanding market and production for lipids. It combines novel and traditional methods from technological and biological perspectives to achieve the most effective pathways for production of modified lipids. The book is organized into three sections exploring development, new production methods and successful products and uses.
On-surface synthesis is appearing as an extremely promising strategy to create organic nanoarchitectures with atomic precision. Molecular building blocks holding adequate functional groups are dosed onto surfaces that support or even drive their covalent linkage. The surface confinement and the frequent lack of solvents (most commonly being performed under vacuum conditions) create a completely new scenario fully complementary to conventional chemistry. In a pedagogical way and based on the most recent developments, this volume presents our current understanding in the field, addressing fundamental reaction mechanisms, synthetic strategies to influence the reactions according to our needs, as well as the ultimate growth and characterization of functional materials. Verging on chemistry, physics and materials science, the book is aimed at students and researchers interested in nanochemistry, surface science, supramolecular materials and molecular devices. Chapters "Mechanistic insights into surface-supported chemical reactions", "Reactivity on and of Graphene Layers: Scanning Probe Microscopy Reviels" and "Bottom-up fabrication of atomically precise graphene nanoribbons" of this book are available open access under a CC BY 4.0 license at link.springer.com
The Chemistry of Heterocyclic Compounds, since its inception, has been recognized as a cornerstone of heterocyclic chemistry. Each volume attempts to discuss all aspects - properties, synthesis, reactions, physiological and industrial significance - of a specific ring system. To keep the series up-to-date, supplementary volumes covering the recent literature on each individual ring system have been published. Many ring systems (such as pyridines and oxazoles) are treated in distinct books, each consisting of separate volumes or parts dealing with different individual topics. With all authors are recognized authorities, the Chemistry of Heterocyclic Chemistry is considered worldwide as the indispensable resource for organic, bioorganic, and medicinal chemists.
Corinna Reisinger has developed a new organocatalytic asymmetric epoxidation of cyclic and acyclic , -unsaturated ketones. In this thesis, Corinna documents her methodology, using primary amine salts as catalysts, and hydrogen peroxide as an inexpensive and environmentally benign oxidant. She describes the unprecedented and powerful catalytic asymmetric hydro peroxi dation of , -enones, a process which produces optically active five-membered cyclic peroxyhemiketals in a single operation. She also proves the versatility and synthetic value of the cyclic peroxyhemiketals by converting them into highly enantioenriched acyclic and cyclic aldol products. Currently, these cyclic aldol products are inaccessible by any other synthetic means. Furthermore, cyclic peroxyhemiketals are precursors to optically active 1,2-dioxolanes which are of biological relevance. This work is a breakthrough in the field of asymmetric epoxidation chemistry and outlines the most efficient method in the literature for generating highly enantioselective cyclic epoxyketones known to date.
Revised and expanded for the second edition, this text details the principal concepts and developments in wood science, chemistry and technology. It includes new chapters on the chemical synthesis of cellulose and its technology, preservation of wood resources and the conservation of waterlogged wood.
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.
This volume of Modern Aspects contains seven chapters. The major topics covered in the first six chapters of this volume include fundamentals of solid state electrochemistry; kinetics of electrochemical hydrogen entry into metals and alloys; oxidation of organics; fuel cells; electrode kinetics of trace-anion catalysis; nano structural analysis. The last chapter is a corrected version of chapter four from Volume 35. Faisal M. AI-faqeer and Howard W. Pickering begin the first chapter by going back to 1864 and Cailletet who found that some hydrogen evolved and was absorbed by iron when it was immersed in dilute sulfuric acid. The absorption of hydrogen into metals and alloys can lead to catastrophic failures of structures. They discuss the kinetics of electrochemical hydrogen entry into metals and alloys. In chapter three, Clyde L. Briant reviews the electrochemistry, corrosion and hydrogen embrittlement of unalloyed titanium. He begins by reviewing the basic electrochemistry and general corrosion of titanium. He also discusses pitting and galvanostatic corrosion followed by a review of hydrogen embrittlement emphasizing the formation of hydrides and the effect of these on titanium's mechanical properties. Christos Comninellis and Gy6rgy F6ti discuss the oxidative electrochemical processes of organics in chapter three. They begin by defining direct and indirect electrochemical oxidation of organics. They introduce a model that allows them to distinguish between active (strong) and non-active (weak) anodes. Different classes of organic compounds are used for kinetic models of organic oxidation at active and non-active type anodes.
G.HAINNAUX Departement Milieu et Activites Agricoles, Centre ORSTOM, 911 Avenue d' Agropolis, B.P. 5045, 34032 Montpellier Cedex , France. Solid state fermentation, popularly abbreviated as SSF, is currently investigated by many groups throughout the world. The study of this technique was largely neglected in the past in European and Western countries and there is now a high demand for SSF, meaning in food, environment, agricultural, phannaceutical and many other biotechnological applications. It gives me satisfaction to note that the importance of this technique was realised at my department way back in 1975 since then, our team has put concentrated efforts on developing this technique. xvii Foreword Advances in Solid State Fermentation Foreword M. PUYGRENIER Agropolis Valorisation, Avenue d' Agropolis, 34394 Montpellier Cedex 5, France. On the name of the Scientific Community, I would like to express the wish that this International Symposium on SSF should be successful. Solid State Fermentation is part of biotechnology research. It consists on seeding solid culture medium with bacteria or fungi (filamentous or higher) and on producing, in this medium (solid components and exudates) metabolites and high value products. In fact, this process is very old. In older industries such the food and agricultural, this technique has been extensively used. An example of this is the production of pork sausages and Roquefort cheese. Pharmaceutical industry could make extensive use of SSF in the production of secondary metabolites of many kinds and development in this direction is soon expected.
The consumption of petroleum has surged during the 20th century, at least partially because of the rise of the automobile industry. Today, fossil fuels such as coal, oil, and natural gas provide more than three quarters of the world's energy. Unfortunately, the growing demand for fossil fuel resources comes at a time of diminishing reserves of these nonrenewable resources. The worldwide reserves of oil are sufficient to supply energy and chemicals for only about another 40 years, causing widening concerns about rising oil prices. The use of biomass to produce energy is only one form of renewable energy that can be utilized to reduce the impact of energy production and use on the global environment. Biomass can be converted into three main products such as energy, biofuels and fine chemicals using a number of different processes. Today, it is a great challenge for researchers to find new environmentally benign methodology for biomass conversion, which are industrially profitable as well. This book focuses on the conversion of biomass to biofuels, bioenergy and fine chemicals with the interface of biotechnology, microbiology, chemistry and materials science. An international scientific authorship summarizes the state-of-the-art of the current research and gives an outlook on future developments.
The series Topics in Organometallic Chemistry presents critical overviews of research results in organometallic chemistry. As our understanding of organometallic structure, properties and mechanisms increases, new ways are opened for the design of organometallic compounds and reactions tailored to the needs of such diverse areas as organic synthesis, medical research, biology and materials science. Thus the scope of coverage includes a broad range of topics of pure and applied organometallic chemistry, where new breakthroughs are being achieved that are of significance to a larger scientific audience. The individual volumes of Topics in Organometallic Chemistry are thematic. Review articles are generally invited by the volume editors. All chapters from Topics in Organometallic Chemistry are published OnlineFirst with an individual DOI. In references, Topics in Organometallic Chemistry is abbreviated as Top Organomet Chem and cited as a journal.
Chiral Derivatizing Agents, Macrocycles, Metal Complexes and Liquid Crystals for Enantiomer Differentiation in NMR Spectroscopy: Thomas J. Wenzel. Chiral NMR Solvating Additives for Differentiation of Enantiomers: Gloria Uccello-Barretta and Federica Balzano. Chiral Sensor Devices for Differentiation of Enantiomers: Kyriaki Manoli, Maria Magliulo and Luisa Torsi. Enantiopure supramolecular cages: synthesis and chiral recognition properties: Thierry Brotin, Laure Guy, Alexandre Martinez, Jean-Pierre Dutasta. Interconversion of Stereochemically Labile Enantiomers (Enantiomerization) : Oliver Trapp. Anisotropy Spectra for Enantiomeric Differentiation of Biomolecular Building Blocks: A.C. Evans, C. Meinert, J.H. Bredehoeft, C. Giri, N.C. Jones, S.V. Hoffmann, U.J. Meierhenrich. Self-disproportionation of Enantiomers of Enantiomerically Enriched Compounds: Alexander E. Sorochinsky and Vadim A. Soloshonok.
This volume represents the Highest Impact Factor of all journals ranked by ISI within Polymer Science. It contains short and concise reports on physics and chemistry of polymers, each written by the world renowned experts. The information remains valid and useful after five or ten years. The electronic version is available free of charge for standing order customers at: springer.com/series/12/
Natural products in the plant and animal kingdom offer a huge diversity of chemical structures that are the result of biosynthetic processes that have been modulated over the millennia through genetic effects. With the rapid developments in spectroscopic techniques and accompanying advances in high-throughput screening techniques, it has become possible to isolate and then determine the structures and biological activity of natural products rapidly, thus opening up exciting opportunities in the field of new drug development to the pharmaceutical industry. Studies in Natural Products Chemistry covers the synthesis or testing and recording of the medicinal properties of natural products, providing cutting edge accounts of the fascinating developments in the isolation, structure elucidation, synthesis, biosynthesis and pharmacology of a diverse array of bioactive natural products.
This volume is concerned with the use of over 16 million tonnes of oils and fats by the oleochemical industry worldwide. It provides an overview of oleochemicals at research and professional level, with an emphasis on their industrial production and applications. Approximately half of the chapters consider matters of relevance throughout the oleochemical industry, while the remainder deal with applications. Authors are drawn from industrial and academic laboratories around the world. The book is directed at chemists and technologists working on the production and use of oleochemicals, analytical chemists and quality assurance personnel, and lipid chemists in academic research laboratories.
Filled with practical applications and research, Biodegradation of Nitroaromatic Compounds and Explosives presents an international perspective on environmental contamination from explosives. It covers biodegradation strategies for DNT and a wide variety of other nitroaromatic compounds of environmental significance and makes the information accessible to practicing environmental and chemical engineers. Biodegradation of Nitroaromatic Compounds and Explosives gives you a synthesis of ongoing research and an appreciation of the remarkable range of biochemical strategies available for the transformation of nitroaromatic compounds. It provides a realistic assessment of the current and potential field applications of the various strategies.
"Compiles nearly 400 fully assigned NMR spectra of approximately 300 polymers and polymer additives, representing all major clases of materials: polyolefins, styrenics, acrylates, methacrylates, vinyl polymers, elastomers, polyethers, polyesters, polymides, silicones, cellulosics, polyurethanes, plasticizers, and antioxidants."
The focus of this singular work is to discuss the role and importance of bioorganic phase in food products-providing the first major reference source for researchers looking to understand all aspects of the isolation, extraction and application of this major element in natural foods. From the identifying features to its applications through biotechnology and nanobiotechnology, this book covers all of the important aspects of bioorganic phase and points to future uses and methods. With chapters focusing on phase extraction and application, food product synthesis and nanoparticle application, Bioorganic Phase in Natural Food: An Overview covers both conventional and non-conventional approaches for the extraction of bioorganic phase from various food sources. Toxicity studies in nanoparticles are presented, and the vital role played by bioorganic phase toward nanoparticles synthesis is outlined in full. For any researcher looking for complete coverage of all main aspects of bioorganic phase in foods, this work provides a comprehensive and well-researched view of this important subject. .
Asymmetric Synthesis of Natural Products Fully updated learning resource covering the concept of using natural product chemistry for strategies in asymmetric synthesis The third edition of Asymmetric Synthesis of Natural Products introduces students to the rapidly growing field of natural products in organic chemistry, discussing the practical, mainly pharmacological, importance of selected compounds and emphasizing the target-oriented approach of organic synthesis which is key in industrial strategies. To aid in reader comprehension, the text includes key references and an Index of Compounds. The textbook is based on two lecture courses (Asymmetric Synthesis & Asymmetric Synthesis of Natural Products), which the author has delivered more than 50 times over the past 20 years in Finland, the UK, Italy, and Greece. This third edition is fully updated from the earlier versions (published by Wiley in 1993 and 2012). The importance of natural products as truly renewable raw materials in sustainable chemistry and circular economy is illustrated through applications of e.g. organocatalysis, organometallic catalysis, and biocatalysis. The contents consist of traditional text supplemented with illustrations (such as chemical drawings and structural formulae). Three dimensional aspects are also discussed with the use of 3D renderings of structures for both reaction mechanisms (molecular modeling) and crystallographic data. Sample topics covered in the textbook include: The foundations of asymmetric synthesis, including the theory and applications of individual asymmetric reactions Sustainable development, the circular economy, and use of renewable raw materials that have become prominent in many fields of science and technology Various natural product classes, including carbohydrates, amino acids, peptides, proteins, nucleosides, nucleotides, nucleic acids, and polyketides The properties of these natural product classes, including their structures, biosynthesis, and interrelationships, as well as examples of asymmetric syntheses and the practical value of these compounds Asymmetric Synthesis of Natural Products is a comprehensive, authoritative, and up-to-date learning resource on the subject for advanced level undergraduate or early-stage graduate students. It is also useful for specialists already working in synthesis who wish to learn about asymmetric synthesis.
This hands-on reference tool provides the most up-to-date information needed to synthesize molecules by solid-phase synthesis (SPS)-employing polymeric support (resins), anchoring linkages (handles), coupling reagents (activators), and protection schemes. The volume presents new strategies for creating a wide variety of compounds invaluable for drug discovery in coming years. Thoroughly analyzes peptides, DNA, carbohydrates, conjugates of biomolecules, and small molecules. Written by 35 internationally recognized authorities, Solid-Phase Synthesis provides experimental procedures and a literature review for peptides, DNA, PNA, carbohydrates, peptidomimetics, and small molecule assembly describes the preparation of solid supports and handles (linkers) as well as their appropriate incorporation into a synthetic strategy discusses methods for the construction of more complex peptides: cyclic (lactam and disulfide), glyco-, phospho-, sulfo- and nucleopeptides explains the protocols for the preparation of side-chain and N-alpha protecting groups for amino acids surveys the various coupling reagents and methods for peptide chain elongation considers convergent peptide synthesis (fragment condensations) examines engineering designs for automation details techniques for the purification and analysis of peptides and combination libraries and more Containing over 2400 references and more than 300 tables, drawings, and equations, Solid-Phase Synthesis is an eminently practical and quick-reference guide for organic, combinatorial, and medicinal chemists and biochemists; pharmacists, pharmacologists, and pharmaceutical researchers; molecular and cell biologists; enzymologists; immunologists; neurobiologists; and graduate and medical school students in these disciplines. |
![]() ![]() You may like...
Chiral Pesticides - Stereoselectivity…
A. Wayne Garrison, Jay Gan, …
Hardcover
R2,956
Discovery Miles 29 560
Assessing Transformation Products of…
Joerg E. Drewes, Thomas Letzel
Hardcover
R5,239
Discovery Miles 52 390
Progress in Medicinal Chemistry, Volume…
G. Lawton, David R. Witty
Hardcover
R4,919
Discovery Miles 49 190
Ionic Liquids - From Knowledge to…
Natalia Plechkova, Robin Rogers, …
Hardcover
R3,566
Discovery Miles 35 660
Controlled/Living Radical Polymerization
Krzysztof Matyjaszewski
Hardcover
R3,245
Discovery Miles 32 450
Integrating Information Literacy into…
Charity Lovitt, Kristen Shuyler, …
Hardcover
R5,251
Discovery Miles 52 510
|