![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Organic chemistry
This unique book, drawing on the author 's lifetime experience, critically evaluates the extensive literature on the field of Metal-Catalysed Reactions of Hydrocarbons. Emphasis is placed on reaction mechanisms involving hydrogenation, hydrogenolysis, skeletal and positional isomerisation, and exchange reactions. The motivation for fundamental research in heterogeneous catalysis is to identify the physicochemical characteristics of active centres for the reaction being studied, to learn how these may be modified or manipulated to improve the desired behavior of the catalyst, and to recognize and control those aspects of the catalyst's structure that limit its overall performance. By restricting the subject of the book to hydrocarbons, Bond has progressively developed the subject matter to include areas of importance both to researchers and to those working in the industry.
The series Topics in Heterocyclic Chemistry presents critical reviews on present and future trends in the research of heterocyclic compounds. Overall the scope is to cover topics dealing with all areas within heterocyclic chemistry, both experimental and theoretical, of interest to the general heterocyclic chemistry community. The series consists of topic related volumes edited by renowned editors with contributions of experts in the field. All chapters from Topics in Heterocyclic Chemistry are published Online First with an individual DOI. In references, Topics in Heterocyclic Chemistry is abbreviated as Top Heterocycl Chem and cited as a journal.
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.
This and its companion Volume 2 chronicle the proceedings of the First Technical Conference on Polyimides: Synthesis, Char acterization and Applications held under the auspices of the Mid Hudson Section of the Society of Plastics Engineers at Ellenville, New York, November 10-12, 1982. In the last decade or so there has been an accelerated interest in the use of polyimides for a variety of applications in a number of widely differing technologies. The applications of polyimides range from aerospace to microelectronics to medical field, and this is attributed to the fact that polyimides offer certain desirable traits, inter alia, high temperature stability. Polyimides are used as organic insulators, as adhesives, as coat ings, in composites, just to name a few of their uses. Even a casual search of the literature will underscore the importance of this class of materials and the high tempo of R&D activity taking place in the area of polyimides. So it was deemed that a conference on polyimides was both timely and needed. This conference was designed to provide a forum for discussion of various ramifications of polyimides, to bring together scientists and technologists interested in all aspects of polyimides and thus to provide an opportunity for cross-pollination of ideas, and to highlight areas which needed further and intensi fied R&D efforts. If the comments from the attendees are a baro meter of the success of a conference, then this event was highly successful and fulfilled amply its stated objectives.
Masakatsu Shibasaki, Motomu Kanai, Shigeki Matsunaga, and Naoya Kumagai: Multimetallic Multifunctional Catalysts for Asymmetric Reactions.- Takao Ikariya: Bifunctional transition metal-based molecular catalysts for asymmetric syntheses.- Chidambaram Gunanathan and David Milstein: Bond Activation by Metal-Ligand Cooperation: Design of Green Catalytic Reactions Based on Aromatization-Dearomatization of Pincer Complexes.- Madeleine C. Warner, Charles P. Casey, and Jan-E. Backvall: Shvo s Catalyst in Hydrogen Transfer Reactions.- Noritaka Mizuno, Keigo Kamata, and Kazuya Yamaguchi: Liquid-Phase Selective Oxidation by Multimetallic Active Sites of Polyoxometalate-Based Molecular Catalysts.- Pingfan Li and Hisashi Yamamoto: Bifunctional Acid Catalysts for Organic Synthesis.- Jun-ichi Ito, Hisao Nishiyama: Bifunctional Phebox Complexes for Asymmetric Catalysis."
This book provides a comprehensive description of the catalytic technologies for selective hydrogenation of benzene to cyclohexene. Focusing on selective hydrogenation of benzene to prepare cyclohexene and its downstream products, such as cyclohexanone, bulk chemicals and high-value fine chemicals, it also discusses the objective laws, reaction mechanisms and scientific significance based on experimental data, analysis and characterization results. Given its scope, the book will appeal to a broad readership, particularly professionals at universities and scientific research institutes, senior undergraduates, master's and doctoral graduate students as well as practitioners in industry.
Proceedings of the NATO Advanced Research Workshop, Reisensburg/Ulm, Donau, Germany, June 16-22, 1985
Recent advancements in the field of asymmetric synthesis have been triggered by the challenges this field has offered to synthetic organic chemists, and the importance of preparing optically active compounds of medical value. Newly developed asymmetric organic reactions combined with improvements and novel applications of previously known reactions have created the need for this current volume. Presenting findings reported in 1991, this book covers asymmetric oxidations, reductions, carbon-- carbon bond formations, carbon--heteroatom bond formations, enzymatic hydrolysis, resolution and transesterification and miscellaneous asymmetric reactions. This book will serve as a useful reference for all researchers, scientists and students working in the field of synthetic organic chemistry.
Although in nature the vast majority of polymers are condensation polymers, much publicity has been focused on functionalized vinyl polymers. Functional Condensation Polymers fulfills the need to explore these polymers which form an increasingly important and diverse foundation in the search for new materials in the twentyfirst century. Some of the advantages condensation polymers hold over vinyl polymers include offering different kinds of binding sites, their ability to be made biodegradable, and their different reactivities with various reagents under diverse reaction conditions. They also offer better tailoring of end-products, different tendencies (such as fiber formation), and different physical and chemical properties. Some of the main areas emphasized include dendrimers, control release of drugs, nanostructure materials, controlled biomedical recognition, and controllable electrolyte and electrical properties.
B. R. Buckley and H. Heaney: Mechanistic Investigations of Copper(I)- Catalyzed Alkyne-Azide Cycloaddition Reactions.- J. D. Crowley and D. A. McMorran: "Click-Triazole" Coordination Chemistry: Exploiting 1,4-Disubstituted-1,2,3-Triazoles as Ligands.- S. Lee and A. H. Flood: Binding Anions in Rigid and Reconfigurable Triazole Receptors.- M. Watkinson: Click Triazoles as Chemosensors.- H.-F. Chow, C.-M. Lo and Y. Chen: Triazole-Based Polymer Gels.- T. Zheng, S. H. Rouhanifard, A. S. Jalloh, P. Wu: Click Triazoles for Bioconjugation.- S. Mignani, Y. Zhou, T. Lecourt and L. Micouin: Recent Developments in the Synthesis 1,4,5-Trisubstituted Triazoles.
This is the second volume of a two-volume work which summarizes in an edited format and in a fairly comprehensive manner many of the recent technical research accomplishments in the area of Elastomers. Advances in Elastomers discusses the various attempts reported on solving these problems from the point of view of the chemistry and the structure of elastomers, highlighting the drawbacks and advantages of each method. It summarize the importance of elastomers and their multiphase systems in human life and industry, and covers all the topics related to recent advances in elastomers, their blends, IPNs, composites and nanocomposites. This second volume is deals with composites and nanocomposites of elastomers.
This thesis describes research into the mode of function, inhibition, and evolution of the ribosomal catalytic center, the Peptidyl Transferase Center (PTC)--research that has already led to attempts at improving PTC antibiotics. The PhD candidate carried out two parallel studies. One using a combination of X-ray crystallography, biochemistry, molecular biology, and theoretical studies to obtain crystal structures of ribosomal particles with antibiotics that target the PTC, revealing the modes of action, resistance, cross-resistance and discrimination between ribosomes of eubacterial pathogens and eukaryotic hosts. In the second parallel study, the candidate synthesized a ribosomal substructure--one that may represent the minimal entity capable of catalyzing peptide bond formation--shedding light on the origin of the ribosome itself. Content Level Research
This is the first broad treatment of carbohydrate chemistry in many years, and presents the structures, reactions, modifications, and properties of carbohydrates. Woven throughout the text are discussions of biological properties of carbohydrates, their industrial applications, and the history of the field of carbohydrate chemistry. Written for students as well as practising scientists, this textbook and handy reference will be of interest to a wide range of disciplines: biochemistry, chemistry, food and nutrition, microbiology, pharmacology, and medicine.
The series Topics in Heterocyclic Chemistry presents critical reviews on present and future trends in the research of heterocyclic compounds. Overall the scope is to cover topics dealing with all areas within heterocyclic chemistry, both experimental and theoretical, of interest to the general heterocyclic chemistry community. The series consists of topic related volumes edited by renowned editors with contributions of experts in the field.
-Shear-Induced Transitions and Instabilities in Surfactant Wormlike Micelles By S. Lerouge, J.-F. Berret -Laser-Interferometric Creep Rate Spectroscopy of Polymers By V. A. Bershtein, P. N. Yakushev -Polymer Nanocomposites for Electro-Optics: Perspectives on Processing Technologies, Material Characterization, and Future Application K. Matras-Postolek, D. Bogdal
This review is focused on controlled/living radical polymerization methods for the preparation of various copolymers. A brief introduction to the subject of radical polymerization, and early attempts to control it, is followed by a detailed examination of the literautre on controlled/living radical copolymerizations from the mid-90's until 2001. The topics covered include statistical/gradient, block, graft, and star copolymers and the polymerization methods used to produce them. These copolymers were prepared using three major controlled radical methods (either nitroxide mediated polymerization, atom transfer radical polymerization or degenerative transfer) and a combination of polymerization techniques, including transformation chemistry or the simultaneous/dual living polymerizations, to achieve the desired chain architecture or topology. An evaluation of the current state of the field is also presented.
This book has pedigree. It has developed from experience over 50 years in reading, writing, thinking, and working with lipids and fatty acids. The study of Lipids now involves many disciplines, all of which require a basic knowledge of the chemical nature and properties of these molecules. The book i s written particularly for those who, with some knowledge of chemistry or biochemistry, need to know more about the mature of lipids and of fatty acids. Much of the readership will be employed in the food industry since 80% of the world production of oils and fats is eaten by humans and another 6% goes into animal feed. They will need to understand the materials they handle; their origin and chemical nature, the effects of processing, and their physical, chemical, biochemical, and nutritional properties. Another group of readers will be employed in the oleochemical industry modifying the material produced by nature for the benefit of human kind. They will have to understand the constraints of production and of chemistry within which they work and to be aware of the present state of knowledge about these materials. Yet another group may consider themselves to be academic researchers; however there is no escape from the real world of market place availability and they will need to know something about sourcing, about the changes which occur when oils and fat are refined and how these materials can be modified on a commercial scale.
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.
This book presents the latest findings on amino acid fermentation and reviews the 50-year history of their development. The book is divided into four parts, the first of which presents a review of amino acid fermentation, past and present. The second part highlights selected examples of amino acid fermentation in more detail, while the third focuses on recent advanced technologies. The last part introduces readers to several topics for future research directions in amino acid production systems. A new field, "amino acid fermentation", was created by the progress of academic research and industrial development. In 1908, the Japanese researcher Kikunae Ikeda discovered glutamate as an Umami substance. Then a new seasoning, MSG (monosodium glutamate), was commercialized. Although glutamate was extracted from the hydro-lysate of wheat or soybean in the early days, a new production method was subsequently invented - "fermentation" - in which glutamate is produced from sugars such as glucose by a certain bacterium called Corynebacterium. The topic of this volume is particularly connected in a significant way with biochemical, biotechnological, and microbial fields. Both professionals in industry and an academic audience will understand the importance of this volume.
A timely and authoritative treatise on the chemistry and diverse applications of chalcogenadiazoles - the five-membered rings containing two carbons, two nitrogens, and one chalcogen (an member of group 16, the oxygen family). The number of different chalcogenadiazoles and their structural diversity make it difficult to gain a clear understanding of the subject by studying an individual system in isolation. Chalcogenadiazoles: Chemistry and Applications emphasizes general features of this class of heterocyclic compounds. It concentrates on properties of each class of chalcogenadiazoles and their cycle-fused derivatives, considering chemical reactions of functional groups only in cases when these reactions permit to characterize the heterocycles as substituents or in respect of its aromaticity.Covering an important and rapidly developing branch of heterocyclic chemistry, this book is an essential resource for students, young professionals and experienced specialists in adjacent fields who are interested in: Trends in the search for compounds with established bioactivity or use in medicine, as agrochemicals, or as reagents for environmental and biochemical analysis Differences in classes of chalcogenadiazoles with respect to their degree of aromaticity and similar general concepts helpful to the nonspecialist The effects of the chalcogen nature and the alternation manner of all atomic constituents on properties of these heterocyclic compounds Combining data from organic, biological, medicinal, materials science, and supramolecular chemistry, Chalcogenadiazoles: Chemistry and Applications is an important source of information not only for chemists in the fields of organic, inorganic, and organometallic chemistry, but also for anyone interested in the research and development of chalcogenadiazoles and related species.
In addition to structure formation in crystallizing polymers and semicrystalline polymers, this second edition completes the topic of transport phenomena. It also reviews solidification by crystallization during cooling and under flow or pressure, which all play an enormous role in polymer melt processing. Generally, there is an intensive interaction between three transport phenomena: heat transfer, momentum transfer (flow, rheology) and (flow induced) crystallization. The strong interaction between the three transport phenomena is a major challenge when it comes to experimentation, and advances in this area are detailed in the book, guiding further development of sound modeling. This book enables readers to follow an advanced course in polymer processing. It is a valuable resource for polymer chemists, applied physicists, rheologists, plastics engineers, mold makers and material scientists.
This book focuses on controlling morphology of different scales for polymers. The authors explain the need for successful control of morphology to yield target macroscopic physical properties in the application of polymers to diverse areas such as engineering materials, nanodielectrics and photonic crystals. The book combines specialized chapters with an introduction to the morphology of polymers and the range of experimental techniques available to evaluate it.
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued.
The subject of Intrinsically Conducting Polymers: an Emerging Technology' was addressed at the NATO Advanced Research Workshop held in Burlington, Vermont, U.S.A. in October 1992. Approximately 30 invited scientists from 11 different countries attended the workshop and 24 lectures were given discussing in detail the most important processing techniques and applications of conducting polymers, along with the basic materials science aspects. The results was the present book, which, for the first time, addresses progress in materials science related to polymers presently on the market and to already existing applications, as well as to future applications. This book covers mostly existing and future applications of intrinsically conducting polymers. Among these applications are the redox-type, such as batteries and electrochemical actuators and artificial muscles. Capacitors, microlithography and transistor uses are addressed. The use of conducting polymers as 'smart' materials in sensor/indicator types of applications is discussed. ESD applications and EMI shielding are subjects that conducting polymers are sought after for. Microwave properties for radar/microwave absorption and for plastics joining/welding are discussed. Also, this book discusses materials processing for the various applications, including fabrication of fibers, textiles, colloids and films/coatings. This book will be an important addition to the libraries of every institution involved in this emerging technology.
The transduction of signals from the extracellular space across the plasma membrane into the interior of cells and ultimately to the nucleus, where in - sponse to such external signals the transcription of the genetic code is inf- enced,belongs to the most fundamental and important events in the regulation of the life cycle of cells. During recent years several signal transduction cascades have been elucidated which regulate,for instance,the growth and the prolife- tion of organisms as diverse as mammals, flies, worms and yeast. The general picture which emerged from these investigations is that nature employs a c- bination of non-covalent ligand/protein and protein/protein interactions together with a set of covalent protein modifications to generate the signals and transduce them to their destinations. The ligands which are recognized may be low molecular weight compounds like lipids, inositol derivatives, steroids or microbial products like cyclosporin. They may be proteins like, for instance, growth factors or intracellular adaptor proteins which carry SH2 or SH3 domains, and they may be specific DNA stretches which are selectively rec- nized by transcription factors. These and other aspects of biological signal transduction provide an open and rewarding field for investigations by scientists from various different dis- plines of biology,medical research and chemistry working in academic research institutions or in industry. |
![]() ![]() You may like...
Advances in Physical Organic Chemistry…
Ian Williams, Nick Williams
Hardcover
R5,803
Discovery Miles 58 030
Occurence, Formation, Health Effects and…
Tanju Karanfil, Stuart W. Krasner, …
Hardcover
R3,179
Discovery Miles 31 790
Comprehensive Natural Products III
Hung-Wen Liu, Tadhg Begley
Hardcover
R99,104
Discovery Miles 991 040
Biobased Monomers, Polymers, and…
Patrick B. Smith, Richard B. Gross
Hardcover
R5,822
Discovery Miles 58 220
Advances in Heterocyclic Chemistry…
Eric F.V. Scriven, Christopher A. Ramsden
Hardcover
R5,891
Discovery Miles 58 910
|