![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Organic chemistry
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.
Organometallic chemistry is an interdisciplinary science which continues to grow at a rapid pace. Although there is continued interest in synthetic and structural studies the last decade has seen a growing interest in the potential of organometallic chemistry to provide answers to problems in catalysis synthetic organic chemistry and also in the development of new materials. This Specialist Periodical Report aims to reflect these current interests reviewing progress in theoretical organometallic chemistry, main group chemistry, the lanthanides and all aspects of transition metal chemistry. Volume 34 covers literature published up to January 2006.
The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students
The series "Advances in Dendritic Macromolecules" aims to cover the
synthesis and supramolecular chemistry of dendritic or cascade
super-molecules as well as their less perfect hyperbranched
cousins.
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. Fro over 90 years The Royal Society of chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic, and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.
Organophosphorus Chemistry provides a comprehensive annual review of the literature. Coverage includes phosphines and their chalcogenides, phosphonium salts, low coordination number phosphorus compounds, penta- and hexa-coordinated compounds, tervalent phosphorus acids, nucleotides and nucleic acids, ylides and related compounds, and phosphazenes. The series will be of value to research workers in universities, government and industrial research organisations, whose work involves the use of organophosphorus compounds. It provides a concise but comprehensive survey of a vast field of study with a wide variety of applications, enabling the reader to rapidly keep abreast of the latest developments in their specialist areas.
Volume 14 of this series presents three interesting reviews of
research on alkaloids. Chapter 1, by Paul L. Schiff, Jr., is a
monumental effort, presenting a selective, comprehensive tabular
review of research on the bisbenzylisoquinoline alkaloids, with an
analysis of the respective alkaloid types. The chapter should serve
as a very useful tool for the bench research scientist who is
involved in the isolation and elucidation of structures of
bisbenzylisoquinoline alkaloids. Moreover, the data in these tables
provides the botanical distribution and occurrence (family, genus,
species) of the various classes of these alkaloids. The alkaloids
are also categorized by their molecular weights and structural
types.
This volume focuses on the use of quantum theory to understand and explain experiments in organic chemistry. High level ab initio calculations, when properly performed, are useful in making quantitative distinctions between various possible interpretations of structures, reactions and spectra. Chemical reasoning based on simpler quantum models is, however, essential to enumerating the likely possibilities. The simpler models also often suggest the type of wave function likely to be involved in ground and excited states at various points along reaction paths. This preliminary understanding is needed in order to select the appropriate higher level approach since most higher level models are designed to describe improvements to some reasonable zeroth order wave function. Consequently, most of the chapters in this volume begin with experimental facts and model functions and then progress to higher level theory only when quantitative results are required.In the first chapter, Zimmerman discusses a wide variety of thermal and photochemical reactions of organic molecules. Gronert discusses the use of ab initio calculations and experimental facts in deciphering the mechanism of -elimination reactions in the gas phase. Bettinger et al focus on carbene structures and reactions with comparison of the triplet and singlet states. Next, Hrovat and Borden discuss more general molecules with competitive triplet and singlet contenders for the ground state structure. Cave explains the difficulties and considerations involved with many of the methods and illustrates the difficulties by comparing with the UV spectra of short polyenes. Jordan et al discuss long-range electron transfer using model compounds and model Hamiltonians. Finally, Hiberty discusses the breathing orbital valence bond model as a different approach to introducing the crucial correlation that is known to be important in organic reactions.
Spectroscopic Properties of Inorganic and Organometallic Compounds provides a unique source of information on an important area of chemistry. Divided into sections mainly according to the particular spectroscopic technique used, coverage in each volume includes: NMR (with reference to stereochemistry, dynamic systems, paramagnetic complexes, solid state NMR and Groups 13-18); nuclear quadrupole resonance spectroscopy; vibrational spectroscopy of main group and transition element compounds and coordinated ligands; and electron diffraction. Reflecting the growing volume of published work in this field, researchers will find this Specialist Periodical Report an invaluable source of information on current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.
This book offers a valuable reference source to graduate and post graduate students, engineering students, research scholars polymer engineers from industry. The book provides the reader with current developments of theoretical models describing the thermodynamics polyelectrolytes as well as experimental findings. A particular emphasis is put on the rheological description of polyelectrolyte solutions and hydrogels.
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience.Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.
The book provides an up-to-date overview of the diverse medical applications of advanced polymers. The book opens by presenting important background information on polymer chemistry and physicochemical characterization of polymers. This serves as essential scientific support for the subsequent chapters, each of which is devoted to the applications of polymers in a particular medical specialty. The coverage is broad, encompassing orthopedics, ophthalmology, tissue engineering, surgery, dentistry, oncology, drug delivery, nephrology, wound dressing and healing, and cardiology. The development of polymers that enhance the biocompatibility of blood-contacting medical devices and the incorporation of polymers within biosensors are also addressed. This book is an excellent guide to the recent advances in polymeric biomaterials and bridges the gap between the research literature and standard textbooks on the applications of polymers in medicine.
Our knowledge of the chemistry of selenium and tellurium has seen significant progress in the last few decades. This monograph comprises contributions from leading scientists on the latest research into the synthesis, structure and bonding of novel selenium and tellurium compounds. It provides insight into mechanistic studies of these compounds and describes coordination chemistry involving selenium and tellurium containing ligands. Contributions also describe the theoretical and spectroscopic studies of selenium and tellurium compounds. Additionally, this monograph outlines the applications of selenium and tellurium in biological systems, materials science and as reagents in organic synthesis and shows how these applications have been a fundamental driving force behind the research into the inorganic and organic chemistry these fascinating elements.
For courses in physical organic chemistry. This classic text is characterized by its clarity, careful choice of examples, and its general approach that is designed to lead to a ready understanding of the subject matter.
In his thesis, Xiaoyu Sun conducts the first total synthesis of all possible stereoisomers of plakortide E and also confirms the absolute configuration of natural plakortide E. Xiaoyu Sun subsequently converts Plakortide E methyl ester to plakortone B in a biomimetic conversion. Construction and functionalization of cyclic peroxides are notoriously difficult due to the very low O-O bond dissociation energy. Plaktoride E is isolated from the Jamaican marine sponge platorits halichondrioides and contains a five-membered peroxide ring, with oxygen atoms linked to tertiary C4 and C6 centers. The methodology used for synthesizing highly substituted cyclic peroxides is novel and useful, and not only extends the field of Pd-catalyzed reactions, but also provides a convenient synthetic approach for the preparation of the 1,2-dioxolanes series. Plakortide E and plakortone B are bioactive, which means that the synthetic studies on them and their analogs are pivotal in drug discovery.
Carbohydrate Chemistry provides review coverage of all publications relevant to the chemistry of monosaccharides and oligosaccharides in a given year. The amount of research in this field appearing in the organic chemical literature is increasing because of the enhanced importance of the subject, especially in areas of medicinal chemistry and biology. In no part of the field is this more apparent than in the synthesis of oligosaccharides required by scientists working in glycobiology. Clycomedicinal chemistry and its reliance on carbohydrate synthesis is now very well established, for example, by the preparation of specific carbohydrate- based antigens, especially cancer-specific oligosaccharides and glycoconjugates. Coverage of topics such as nucleosides, amino-sugars, alditols and cyclitols also covers much research of relevance to biological and medicinal chemistry. Each volume of the series brings together references to all published work in given areas of the subject and serves as a comprehensive database for the active research chemist Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis.
The use of isoconversional kinetic methods for analysis of thermogravimetric and calorimetric data on thermally stimulated processes is quickly growing in popularity. The purpose of this book is to create the first comprehensive resource on the theory and applications of isoconversional methodology. The book introduces the reader to the kinetics of physical and chemical condensed phase processes that occur as a result of changing temperature and discusses how isoconversional analysis can provide important kinetic insights into them. The book will help the readers to develop a better understanding of the methodology, and promote its efficient usage and successful development.
In this second edition methods are described to measure the synthesis of lipids such as the phosphoinositides, ceramides and sphingomyelin, as well as techniques to molecularly characterize the various kinases and phosphatases that regulate the intracellular metabolism of these lipids. Lipid Signaling Protocols, Second Edition guides readers through detailed experimental protocols, which are complimented by review chapters that highlight the technical considerations, challenges and potential pitfalls associated with using these laboratory-based approaches. Written for the Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Lipid Signaling Protocols, Second Edition aims to ensure successful results in the further study of this vital field.
This thesis introduces a series of novel, non-conjugated polyarylether hosts that are not subject to the triplet-energy limitations of traditional conjugated polymer hosts. As a result of this major breakthrough, the long-standing problem of triplet energy back transfer has now been overcome, making it possible to design high-efficiency electrophosphorescent polymers (PhPs), especially the blue and all-phosphorescent white ones. In addition, the author proposes a spiro-linked hyperbranched architecture for PhPs to inhibit the undesired triplet energy back transfer process in low triplet-energy hosts. The work in this thesis provides vital new insights into the design of PhPs and has led to several publications in high-profile journals.
The book gathers the peer-reviewed contributions presented at the 3rd International Conference on Application of Superabsorbent Polymers (SAP) and Other New Admixtures towards Smart Concrete, held in Skukuza, South Africa, on November 25-27, 2019. It features papers focusing on the behavior of SAP in concrete (in particular the absorption behavior) as well as the effect of SAP on fresh and hardened concrete properties. It also covers topics such as other modern admixtures, in particular rheology-modifying admixtures, including the recently emerging field of bio- or waste-derived admixtures. The conference builds on the experience and summarizes the activities of the RILEM Technical Committee 260-RSC "Recommendations for Use of Superabsorbent Polymers in Concrete Construction" and addresses other prominent research activities in the field of concrete admixtures.
In this volume, a detailed description of cutting-edge computational methods applied to protein modeling as well as specific applications are presented. Chapters include: the application of Car-Parrinello techniques to enzyme mechanisms, the outline and application of QM/MM methods, polarizable force fields, recent methods of ligand docking, molecular dynamics related to NMR spectroscopy, computer optimization of absorption, distribution, metabolism and excretion extended by toxicity for drugs, enzyme design and bioinformatics applied to protein structure prediction. A keen emphasis is laid on the clear presentation of complex concepts, since the book is primarily aimed at Ph.D. students, who need an insight in up-to-date protein modeling. The inclusion of descriptive, color figures will allow the reader to get a pictorial representation of complicated structural issues.
This is the second edition of the book "Thermodynamics of Fluids under Flow," which was published in 2000 and has now been corrected, expanded and updated. This is a companion book to our other title Extended irreversible thermodynamics (D. Jou, J. Casas-Vazquez and G. Lebon, Springer, 4th edition 2010), and of the textbook Understanding non-equilibrium thermodynamics (G. Lebon, D. Jou and J. Casas-Vazquez, Springer, 2008. The present book is more specialized than its counterpart, as it focuses its attention on the non-equilibrium thermodynamics of flowing fluids, incorporating non-trivial thermodynamic contributions of the flow, going beyond local equilibrium theories, i.e., including the effects of internal variables and of external forcing due to the flow. Whereas the book's first edition was much more focused on polymer solutions, with brief glimpses into ideal and real gases, the present edition covers a much wider variety of systems, such as: diluted and concentrated polymer solutions, polymer blends, laminar and turbulent superfluids, phonon hydrodynamics and heat transport in nanosystems, nuclear collisions, far-from-equilibrium ideal gases, and molecular solutions. It also deals with a variety of situations, emphasizing the non-equilibrium flow contribution: temperature and entropy in flowing ideal gases, shear-induced effects on phase transitions in real gases and on polymer solutions, stress-induced migration and its application to flow chromatography, Taylor dispersion, anomalous diffusion in flowing systems, the influence of the flow on chemical reactions, and polymer degradation. The new edition is not only broader in scope, but more educational in character, and with more emphasis on applications, in keeping with our times. It provides many examples of how a deeper theoretical understanding may bring new and more efficient applications, forging links between theoretical progress and practical aims. This updated version expands on the trusted content of its predecessor, making it more interesting and useful for a larger audience."
This book covers graphene reinforced polymers, which are useful in electronic applications, including electrically conductive thermoplastics composites, thermosets and elastomers. It systematically introduces the reader to fundamental aspects and leads over to actual applications, such as sensor fabrication, electromagnetic interference shielding, optoelectronics, superconductivity, or memory chips. The book also describes dielectric and thermal behaviour of graphene polymer composites - properties which are essential to consider for the fabrication and production of these new electronic materials. The contributions in this book critically discuss the actual questions in the development and applications of graphene polymer composites. It will thus appeal to chemists, physicists, materials scientists as well as nano technologists, who are interested in the properties of graphene polymer composites. |
![]() ![]() You may like...
|