![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Pharmaceutical technology
All medicinal products have to be licensed before marketing in any of the EEC, Nordic and EFTA countries. This book provides a systematic account of the major technical, administrative and legal requirements for registering a product in any of the national markets within the EEC, using the existing procedures, with guidance as to how these procedures are likely to change with the creation of a single European market in pharmaceuticals after 1992. The book should be of value to the pharmaceutical industry and their suppliers (the bulk excipient and active substance manufacturers); to government regulatory agencies; and to members of many technical, professional, scientific, medical and regulatory societies and organizations concerned directly and indirectly with medicinal products - particularly to members of the pharmaceutical and medical professions. There is an enormous interest in this subject in the EEC, the USA and Japan due to the likelihood of the creation in 1992 of a single market with some 350,000 patients.
Essential Elements for a GMP Analytical Chemistry Department is a systematic approach to understanding the essential elements required for a successful GMP Analytical Department to function as an efficient and effective organization. It describes in detail a department structure which allows for the necessary processes to become available to all its personnel in a way where there is a free flow of information and interaction. The environment and culture created by this approach encourages and rewards the sharing of ideas, skills, and abilities among department personnel. The essential elements such as , SOP's, regulatory guidance's/guidelines, project teams, technical and department processes, personnel motivation, outsourcing, and hiring the best is among the many topics that are discussed in detail and how they can be implemented to build an efficient and effective Analytical Department. This book will serve as a valuable asset to the many companies required to perform GMP analytical method development, validation, analyses etc including start-up, virtual, and generic pharmaceutical companies.
Pharmacokinetics and Toxicokinetics provides an overview of pharmacokinetics and toxicokinetics in a comprehensible, interrelated, and applied manner. It integrates the principles held in common by both fields through a logical and systematic approach. The book presents mathematical descriptions of physiological processes employed in different approaches to PK/TK modeling. It focuses on emphasizing general principles and concepts, rather than isolated observations. Above all, the book is an effort to blend the pharmaceutical and toxicological aspects of both fields. The systematic compilation of mathematical concepts and methodologies allows readers to decide on relevant concepts and approaches for their research, scientific or regulatory decisions, or for offering advance courses and seminars. This is an invaluable resource for scientists in the pharmaceutical sciences, clinical sciences, and environmental health sciences, as well as those involved in drug discovery and development.
This book deals with the emerging concept that certain pathogenic bacteria and viruses, when infecting people with cancer, actively fight tumors, allowing their regression. Although such observations go back more than 100 years, use of specific bacterial strains, or viruses, usually genetically modified with known anticancer drugs, and their protein/peptide products, has gained ground in recent years, allowing significant cancer regression in clinical trials with stage III/IV cancer patients or even in pediatric brain tumor patients, often without any demonstration of toxicity. It is composed of 12 chapters written by pioneers in microbial, biotech, and cancer research and covers the emerging roles of various microorganisms and their products in cancer therapy. The book highlights the benefits of using conventional cancer treatments (such as chemo- and radiotherapies) with microbial-based therapies. Such combinatorial therapies have gained particular attention as a strategy to overcome drug resistance, and the readers of the book will discover their impact on fundamental research and promising results from clinical trials.
This contributed volume presents an overview of concepts, methods, and applications used in several quantitative areas of drug research, development, and marketing. Chapters bring together the theories and applications of various disciplines, allowing readers to learn more about quantitative fields, and to better recognize the differences between them. Because it provides a thorough overview, this will serve as a self-contained resource for readers interested in the pharmaceutical industry, and the quantitative methods that serve as its foundation. Specific disciplines covered include: Biostatistics Pharmacometrics Genomics Bioinformatics Pharmacoepidemiology Commercial analytics Operational analytics Quantitative Methods in Pharmaceutical Research and Development is ideal for undergraduate students interested in learning about real-world applications of quantitative methods, and the potential career options open to them. It will also be of interest to experts working in these areas.
Validation of computer systems is the process that assures the formal assessment and report of quality and performance measures for all the life-cycle stages of software and system development, its implementation, qualification and acceptance, operation, modification, requalification, maintenance and retirement (PICS CSV PI 011-3). It is a process that demonstrates the compliance of computer systems functional and non-functional requirements, data integrity, regulated company procedures and safety requirements, industry standards, and applicable regulatory authority's requirements. Compliance is a state of being in adherence to application-related standards or conventions or regulations in laws and similar prescriptions. This book, which is relevant to the pharmaceutical and medical devices regulated operations, provides practical information to assist in the computer validation to production systems, while highlighting and efficiently integrating worldwide regulation into the subject. A practical approach is presented to increase efficiency and to ensure that the validation of computer systems is correctly achieved.
This volume contains a collection of innovative techniques for studying targeted protein degradation. Chapters guide readers through heterobifunctional proteolysis-targeting chimeras (PROTACs) approaches, E3 ligase, E3 ligase-induced ubiquitylation, proteomic approaches, novel degrader molecules, molecular glue, and stabilize binding interaction between a target and E3 ubiquitin ligase. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Targeted Protein Degradation: Methods and Protocols aims to ensure successful results in this emerging field of drug discovery.
Drug repurposing is the development of existing drugs for new uses: given that 9 in 10 drugs that enter drug development are never marketed and therefore represent wasted effort, it is an attractive as well as inherently more efficient process. Three repurposed drugs can be brought to market for the same cost as one new chemical entity; and they can also be identified more quickly, an important benefit for patients whose diseases are progressing faster than therapeutic innovation. But repurposing also requires a fresh look at configuring pharmaceutical R&D, considering clinical, regulatory and patent issues much earlier than would otherwise be the case; a holistic gedanken experiment almost needs to be undertaken at the very start of any repurposing development. In addition to new ways of thinking, the discovery of repurposing opportunities can take advantage of artificial intelligence techniques to match the perfect new use for an existing drug. And while repurposing of medicines has been in the mind of every doctor since Hypocrates, modern clinical practice will simply have to adapt to new repurposing techniques in an age where the number of known diseases is increasing much faster than the healthcare dollars available.
The biotechnology/biopharmaceutical sector has tremendously grown which led to the invention of engineered antibodies such as Antibody Drug Conjugates (ADCs), Bispecific T-cell engager (BITES), Dual Variable Domain (DVD) antibodies, and fusion proteins that are currently being used as therapeutic agents for immunology, oncology and other disease conditions. Regulatory agencies have raised the bar for the development and manufacture of antibody-based products, expecting to see the use of Quality by Design (QbD) elements demonstrating an in-depth understanding of product and process based on sound science. Drug delivery systems have become an increasingly important part of the therapy and most biopharmaceuticals for self-administration are being marketed as combination products. A survey of the market indicates that there is a strong need for a new book that will provide "one stop shopping" for the latest information and knowledge of the scientific and engineering advances made over the last few years in the area of biopharmaceutical product development. The new book entitled Development of Biopharmaceutical Drug Device Products is a reference text for scientists and engineers in the biopharmaceutical industry, academia or regulatory agencies. With insightful chapters from experts in the field, this new book reviews first principles, covers recent technological advancements and provides case studies and regulatory strategies relating to the development and manufacture of antibody-based products. It covers topics such as the importance of early preformulation studies during drug discovery to influence molecular selection for development, formulation strategies for new modalities, and the analytical techniques used to characterize them. It also addresses important considerations for later stage development such as the development of robust formulations and processes, including process engineering and modeling of manufacturing unit operations, the design of analytical comparability studies, and characterization of primary containers (pre-filled syringes and vials).Finally, the latter half of the book reviews key considerations to ensure the development and approval of a patient-centered delivery system design. This involves the evolving regulatory framework with perspectives from both the US and EU industry experts, the role of international standards, design control/risk management, human factors and its importance in the product development and regulatory approval process, as well as review of the risk-based approach to bridging between devices used in clinical trials and the to-be-marketed device. Finally, case studies are provided throughout.The typical readership would have biology and/or engineering degrees and would include researchers, scientific leaders, industry specialists and technology developers working in the biopharmaceutical field.
Continuous pharmaceutical manufacturing is currently receiving much interest from industry and regulatory authorities, with the joint aim of allowing rapid access of novel therapeutics and existing medications to the public, without compromising high quality. Research groups from different academic institutions have significantly contributed to this field with an immense amount of published research addressing a variety of topics related to continuous processing. The book is structured to have individual chapters on the different continuous unit operations involved in drug substance and drug product manufacturing. A wide spectrum of topics are covered, including basic principles of continuous manufacturing, applications of continuous flow chemistry in drug synthesis, continuous crystallization, continuous drying, feeders and blenders, roll compaction and continuous wet granulation.The underlying theme for each of these chapters is to present to the reader the recent advances in modeling, experimental investigations and equipment design as they pertain to each individual unit operation. The book also includes chapters on quality by design (QbD) and process analytical technology (PAT) for continuous processing, process control strategies including new concepts of quality-by-control (QbC), real-time process management and plant optimization, business and supply chain considerations related to continuous manufacturing as well as safety guidelines related to continuous chemistry. A separate chapter is dedicated to discussing regulatory aspects of continuous manufacturing, with description of current regulatory environment quality/GMP aspects, as well as regulatory gaps and challenges. Our aim from publishing this book is to make it a valuable reference for readers interested in this topic, with a desire to gain a fundamental understanding of engineering principles and mechanistic studies utilized in understanding and developing continuous processes. In addition, our advanced readers and practitioners in this field will find that the technical content of Continuous Pharmaceutical Processing is at the forefront of recent technological advances, with coverage of future prospects and challenges for this technology.
The book presents a comprehensive and up-to-date overview of phytochemicals as efficient cancer therapeutics. Over the last few decades there has been a paradigm shift from conventional cancer therapeutic approaches to alternative and complementary medicinal approaches especially using phytoconstituents from natural products. As such, the book provides an in-depth understanding of phytochemicals targeting diverse signaling pathways involved in cancer along with the evaluation of the cancer modulatory effects of phytochemicals. It also highlights the potential modulatory effect of single nucleotide polymorphisms (SNPs) on the cancer-associated cellular pathways and their interactions with the phytochemicals. Further, it analyzes the drug delivery methods, bioavailability of active components of botanicals, and toxicity of phytochemicals. Lastly, the book elucidates the 3D cell culture and animal models systems to analyze the beneficial effects of phytochemicals in cancer.
Many newly proposed drugs suffer from poor water solubility, thus presenting major hurdles in the design of suitable formulations for administration to patients. Consequently, the development oftechniques and materials to overcome these hurdles is a major area of research in pharmaceutical companies. Drug Delivery Strategies for Poorly Water-Soluble Drugs provides a comprehensive overview of currently used formulation strategies for hydrophobic drugs, including liposome formulation, cyclodextrin drug carriers, solid lipid nanoparticles, polymeric drug encapsulation delivery systems, self-microemulsifying drug delivery systems, nanocrystals, hydrosol colloidal dispersions, microemulsions, solid dispersions, cosolvent use, dendrimers, polymer- drug conjugates, polymeric micelles, and mesoporous silica nanoparticles. For each approach the book discusses the main instrumentation, operation principles and theoretical background, with a focus on criticalformulation features and clinical studies. Finally, the book includes some recent and novel applications, scale-up considerations and regulatory issues. Drug Delivery Strategies for Poorly Water-Soluble Drugs is an essential multidisciplinary guide to this important area of drug formulation for researchers in industry and academia working in drugdelivery, polymers and biomaterials.
This edited book comprises of eight chapters dealing on various aspects of pharmaceutical technology for delivery of natural products. Book chapters deal with the solubility and bioavailability enhancement technologies for natural products. Emphasis has also been given on the significance of delivery strategies for improving the therapeutic efficacy of paclitaxel, galantamine and tea constituents.
Nanotechnology has revolutionized the approach to designing and developing novel drug delivery systems. The last two decades have seen a great interest in the use of nanotechnology to offer efficient ways of delivering new and existing drugs and macromolecules. The focus of this book is the application of nanotechnology to deliver drugs and biological agents by the mucosal routes of administration i.e. nasal, pulmonary, buccal, and oral routes. It provides an overview of nanotechnology in drug delivery with a description of different types of nanoparticles, methods of preparation and characterization, and functionalization for site-specific drug delivery. The emphasis is on the use of nanoparticles in treating various cancers and infectious diseases. It broadens the use of nanoparticles by including biologics, including vaccines and immunotherapies, apart from drugs and acknowledges the concerns around the potential toxicity of nanoparticles to the host; several chapters will discuss the biodistribution of these nanoparticles when mucosal routes of administration are employed. Further, the interaction of nanoparticles with the host's immune cells is discussed. Moreover, it reviews the regulatory aspects of nanotechnology in product development, especially when delivered by the mucosal route of administration. Lastly, discusses the challenges and opportunities to manufacture nanoparticles on an industrial scale. This book is the first of its kind to focus on the design, development and delivery of nanoparticles when administered by different mucosal routes.
This book offers an authoritative review of biopharmaceuticals and their clinical relevance. Biopharmaceuticals have been showing high therapeutic potential by means of biological and biosimilar medicines, particularly for the treatment of cancer, chronic diseases (e.g. diabetes, Crohn's disease, psoriasis and rheumatoid arthritis), neurodegenerative disorders (e.g. multiple sclerosis), and they have also been contributing to the progress of innovative therapies such as assisted reproductive medicine. Since the eighties, several biopharmaceuticals have been approved and, due to patents expiration, many biosimilars are also marketed. In this book, readers will find the most relevant updated information about the main clinical applications of pharmaceutical biotechnology. The authors provide expert analysis about the industrial challenges of recombinant proteins and the different classes of biopharmaceuticals, including monoclonal antibodies, vaccines, growth factors and stem cells. Topics such as bioprinting technologies in tissue engineering, gene therapy and personalized medicine are also covered in this book. Professionals, students and researchers interested in this field will find this work an important account.
This book explores the possible development of neurokinin-3 receptor (NK3R) antagonists with reduced environmental impact. Pharmaceuticals are used to cure diseases and to alleviate symptoms in humans and animals. However, the stable, bioactive substances excreted by patients have unfavorable effects on non-target species. To overcome these disadvantages of these highly stable, potent substances, drug design to turn off bioactivity after release into the environment is needed. The book describes the development of eco-friendly NK3R antagonists by introducing a labile functional moiety and substituting a scaffold. This resulted in a novel NK3R antagonist that oxidized into its inactive form when exposed to air. Further, the book presents an efficient and easily achievable synthetic method of creating triazolopiperazine scaffolds, as well as a structure-activity relationship study involving scaffold hopping for decomposable motifs, which led to a novel photodegradable NK3R antagonist. Demonstrating that it is possible to develop compounds that convert into their inactive forms under environmental conditions, this book is useful for anyone interested in therapeutic agents with reduced environmental impact.
Membrane processes are increasingly used in pharmaceutical and
biochemical engineering and biotechnology for concentration and
purification, synthesis of molecules and drug delivery systems, and
support for biochemical reactions. This book provides a
state-of-the art overview of the classical membrane processes used
in pharmaceutical and biochemical engineering and biotechnology,
such as ultrafiltration, microfiltration, virus filtration,
membrane chromatography, membrane emulsification, liquid membranes
and membrane bioreactors. It describes the general rules
(principles, choice of configurations, membranes, parameters,
etc.), recent developments (fouling control, increase permeate flux
and selectivity, etc.), applications, and theoretical descriptions.
Further, it presents emerging processes such as solvent resistant
nanofiltration and membrane crystallization.
This book presents the state of the art in glycoscience and proposes a road map for the coming decade, focusing on the potential of glycoscience research to shed light on important basic science issues and give rise to exciting new applications, especially in the field of diagnosis and therapeutics. Individual sections offer in-depth coverage of various topics relating to glycans and biopharmaceuticals, glycans in medical science and medicine, glycan technologies, glycans in food and nutrients, and glycan-related materials and their uses. In addition, the book presents an exemplary training course on glycomics and highlights educational and analytical web resources, and also includes glossaries and boxes summarizing key facts to ensure ease of understanding for non-expert readers and students. Written by more than 150 active participants in the Japan Consortium for Glycobiology and Glycotechnology (JCGG), whose goal is to promote the development of interdisciplinary glycoscience and establish a global network in the field, it is a valuable resource for students, postdocs, and researchers in the life sciences as well as for stakeholders and professionals in government, funding agencies and industry.
"Pharmacology for Chemists, Second Edition" is aimed at industrial and academic organic chemists holding advanced degrees who are entering the field of medicinal chemistry, and who have had little or no education in or exposure to the biological sciences, especially physiology and pharmacology. The first portion of this book concentrates on biological/pharmacological principles and concepts, and the second portion demonstrates how these concepts and principles are applicable to the medicinal chemists efforts, by describing some selected categories of drugs as examples. The book is not intended to be a textbook of pharmacology, but rather is intended to serve as a tool to prepare the reader for further study and more in depth reading.
The second edition defines the tools used in QA/QC, especially the application of statistical tools during analytical data treatment. Clearly written and logically organized, it takes a generic approach applicable to any field of analysis. The authors begin with the theory behind quality control systems, then detail validation parameter measurements, the use of statistical tests, counting the margin of error, uncertainty estimation, traceability, reference materials, proficiency tests, and method validation. New chapters cover internal quality control and equivalence method, changes in the regulatory environment are reflected throughout, and many new examples have been added to the second edition.
The book provides a reference for years to come, written by world-renowned expert investigators studying sex differences, the role of sex hormones, the systems biology of sex, and the genetic contribution of sex chromosomes to metabolic homeostasis and diseases. In this volume, leaders of the pharmaceutical industry present their views on sex-specific drug discovery. Many of the authors presented at the Keystone Symposium on "Sex and gender factors affecting metabolic homeostasis, diabetes and obesity" to be held in March 2017 in Lake Tahoe, CA. This book will generate new knowledge and ideas on the importance of gender biology and medicine from a molecular standpoint to the population level and to provide the methods to study them. It is intended to be a catalyst leading to gender-specific treatments of metabolic diseases. There are fundamental aspects of metabolic homeostasis that are regulated differently in males and females, and influence both the development of diabetes and obesity and the response to pharmacological intervention. Still, most preclinical researchers avoid studying female rodents due to the added complexity of research plans. The consequence is a generation of data that risks being relevant to only half of the population. This is a timely moment to publish a book on sex differences in diseases as NIH leadership has asked scientists to consider sex as a biological variable in preclinical research, to ensure that women get the same benefit of medical research as men.
This book examines stealth liposomes from a multidisciplinary approach, which includes theoretical polymer physics, organic synthesis, colloid science, and biology. Discussions include theory, chemistry, biochemistry, pharmacology, preclinical studies in model systems, and medical applications in humans.
Describing recent developments in the engineering and generation of plants as production platforms for biopharmaceuticals, this book includes both vaccines and monoclonal antibodies. It has a particular emphasis on targeting diseases which predominate in less developed countries, encompassing the current state of technologies and describing expression systems and applications. This book also includes a variety of vaccine case studies, protecting against pervasive infectious diseases such as rabies, influenza and HIV. |
![]() ![]() You may like...
The Art of Logic - How to Make Sense in…
Eugenia Cheng
Paperback
![]()
Lied Vir Sarah - Lesse Van My Ma
Jonathan Jansen, Naomi Jansen
Hardcover
![]()
Vulnerability - New Essays in Ethics and…
Catriona Mackenzie, Wendy Rogers, …
Hardcover
R3,994
Discovery Miles 39 940
Catalyst Characterization - Physical…
Boris Imelik, Jacques C. Vedrine
Hardcover
R8,715
Discovery Miles 87 150
|