![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Pharmaceutical technology
High-throughput screening and combinatorial chemistry are two of the most potent weapons ever to have been used in the discovery of new drugs. At a stroke, it seems to be possible to synthesise more molecules in a month than have previously been made in the whole of the distinguished history of organic chemistry, Furthermore, all the molecules can be screened in the same short period. However, like any weapons of immense power, these techniques must be used with care, to achieve maximum impact. The costs of implementing and running high-throughput screening and combinatorial chemistry are high, as large dedicated facilities must be built and staffed. In addition, the sheer number of chemical leads generated may overwhelm the lead optimisation teams in a hail of friendly fire. Mother nature has not entirely surrendered, as the number of building blocks that could be used to build libraries would require more atoms than there are in the universe. In addition, the progress made by the Human Genome Project has uncovered many proteins with different functions but related binding sites, creating issues of selectivity. Advances in the new field of pharmacogenomics will produce more of these challenges. There is a real need to make hi- throughput screening and combinatorial chemistry into 'smart' weapons, so that their power is not dissipated. That is the challenge for modellers, computational chemists, cheminformaticians and IT experts. In this book, we have broken down this grand challenge into key tasks.
The complexity of biological systems has intrigued scientists from many disciplines and has given birth to the highly influential field of systems biology wherein a wide array of mathematical techniques, such as flux balance analysis, and technology platforms, such as next generation sequencing, is used to understand, elucidate, and predict the functions of complex biological systems. More recently, the field of synthetic biology, i.e., de novo engineering of biological systems, has emerged. Scientists from various fields are focusing on how to render this engineering process more predictable, reliable, scalable, affordable, and easy. Systems and control theory is a branch of engineering and applied sciences that rigorously deals with the complexities and uncertainties of interconnected systems with the objective of characterising fundamental systemic properties such as stability, robustness, communication capacity, and other performance metrics. Systems and control theory also strives to offer concepts and methods that facilitate the design of systems with rigorous guarantees on these properties. Over the last 100 years, it has made stellar theoretical and technological contributions in diverse fields such as aerospace, telecommunication, storage, automotive, power systems, and others. Can it have, or evolve to have, a similar impact in biology? The chapters in this book demonstrate that, indeed, systems and control theoretic concepts and techniques can have a significant impact in systems and synthetic biology. Volume I provides a panoramic view that illustrates the potential of such mathematical methods in systems and synthetic biology. Recent advances in systems and synthetic biology have clearly demonstrated the benefits of a rigorous and systematic approach rooted in the principles of systems and control theory - not only does it lead to exciting insights and discoveries but it also reduces the inordinately lengthy trial-and-error process of wet-lab experimentation, thereby facilitating significant savings in human and financial resources. In Volume I, some of the leading researchers in the field of systems and synthetic biology demonstrate how systems and control theoretic concepts and techniques can be useful, or should evolve to be useful, in order to understand how biological systems function. As the eminent computer scientist Donald Knuth put it, "biology easily has 500 years of exciting problems to work on". This edited book presents but a small fraction of those for the benefit of (1) systems and control theorists interested in molecular and cellular biology and (2) biologists interested in rigorous modelling, analysis and control of biological systems.
This book is the first to summarize new technologies for engineered cell manipulation. The contents focus on control of cellular functions by nanomaterials and control of three-dimensional cell-cell interactions. Control of cellular functions is important for cell differentiation, maturation, and activation, which generally are controlled by the addition of soluble cytokines or growth factors into cell culture dishes. Target antigen molecules can be efficiently delivered to the cytosol of the dendritic cells using the nanoparticle technique described here, and cellular functions such as dendritic cell maturation can be controlled easily and with precision. This book describes basic preparation of the nanoparticles, activation control of dendritic cells, immune function control, and in vivo application for various vaccination systems. The second type of control,that of cell-cell interaction, is important for tissue engineering in order to develop three-dimensional cellular constructs. To achieve in vitro engineering of three-dimensional human tissue constructs, cell-cell interaction must be controlled in three dimensions, but typical biological cell manipulation technique cannot accomplish this task. An engineered cell manipulation technique is necessary. In this book the authors describe the fabrication of nanofilms onto cell surfaces, development of three-dimensional cellular multilayers, and various applications of the cellular multilayers as three-dimensional human models. This important work will be highly informative for researchers and students in the fields of materials science, polymer science, biomaterials, medicinal science, nanotechnology, biotechnology, and biology.
It is evident that biochemical control is not strictly hierarchical and that intermediary metabolism can contribute to control of regulatory pathways. Metabolic studies are therefore increasingly important in gene function analyses, and an increased interest in metabolites as biomarkers for disease progression or response to therapeutic intervention is also evident in the pharmaceutical industry. This book offers guidelines to currently available technology and bioinformatics and database strategies now being developed. Evidence is presented that metabolic profiling is a valuable addition to genomics and proteomics strategies devoted to drug discovery and development, and that metabolic profiling offers numerous advantages.
This book volume provides complete and updated information on the applications of Design of Experiments (DoE) and related multivariate techniques at various stages of pharmaceutical product development. It discusses the applications of experimental designs that shall include oral, topical, transdermal, injectables preparations, and beyond for nanopharmaceutical product development, leading to dedicated case studies on various pharmaceutical experiments through illustrations, art-works, tables and figures. This book is a valuable guide for all academic and industrial researchers, pharmaceutical and biomedical scientists, undergraduate and postgraduate research scholars, pharmacists, biostatisticians, biotechnologists, formulations and process engineers, regulatory affairs and quality assurance personnel.
This title is a comprehensive text that addresses key aspects of nanomedicine such as properties occurring at the nanoscale that have unique medical effects, great molecular knowledge of the human body and disease processes, and apparent clinical translation as opposed to narrow insufficient texts that address only a few topics and attempt to "rebrand" established drug delivery. It will clearly define the field which is needed due to the immaturity and broad nature of the field. The book is aligned with both the USA and European roadmaps for nanomedicine and will address initiatives taken in Asia that ensures timely and relevant content. In-depth chapters ensure each section is adequately covered. The nanopharmaceutical section focuses on novel drug delivery systems relevant to nanomedicine and the book has an extensive section on immune recognition at the nanoscale which has implications for in vivo applications of nanomedicines.
The title of this proceedings comes from the book The Antibiotic Paradox by Stuart B. Levy (Plenum Publishing Corporation, 1992), referring to the paradox that the more antibiotics are used to treat infectious diseases, the less effective they become. When antibiotics were first introduced, they were considered wonder drugs because they were so effective. But with time bacteria have become resistant to nearly all antibiotics, and resistance is spreading faster than new antibiotics are being developed. This book will identify the issues concerning resistance, as well as describe efforts to develop new drugs that overcome the problem of resistance.
The enormous potential of siRNA as a therapeutic has led to an explosion of interest from the scientific community. There has been intense interest from Big Pharma to capitalise on this new technology but the fact remains that delivery is a key determinant in realizing the full clinical potential of RNA interference. There is an urgent need for better delivery methods to take this technology forward. This book addresses the role of different RNAi molecules in cellular processes as rational for diagnostic and therapeutic approaches. This book will cover RNAi therapeutic design to optimize siRNA potency and reduce off-target effects and current delivery technologies to overcome both intracellular and extracellular barriers. The reader will gain an insight into RNA interference from the cellular mechanisms to screening to siRNA design right through to diagnostic and therapeutic applications.
This book offers a comprehensive study of biological molecules acquired from marine organisms, which have been exploited for drug discovery with the aim to treat human diseases. Biomolecules have potential impacts on a diverse range of fields, including medical and pharmaceutical science, industrial science, biotechnology, basic research, molecular science, environmental science and climate change, etc. To understand and effectively apply medicinally important biomolecules, multidisciplinary approaches are called for. The ocean remains a rich biological resource, and the vast untapped potential of novel molecules from marine bio-resources has caught the interest of more and more researchers. These novel biological compounds have never been found in terrestrial or other ecosystems, but only in this rich niche. Advances in sampling techniques and technologies, along with increased funding for research and nature conservation, have now encouraged scientists to look deeper in the waters. Aquaculture supports both tremendous seafood production and the bulk production of marine-derived drugs. Furthermore, molecular methods are now being extensively employed to explore the untapped marine microbial diversity. With the help of molecular and biotech tools, the ability of marine organisms to produce new biosynthetic drugs can be greatly enhanced. This book provides an extensive compilation of the latest information on marine resources and their undisputedly vital role in the treatment of diverse ailments.
Infectious diseases caused by viruses, parasites, bacteria, and fungi are the number one cause of death worldwide. Although new technologies have improved diagnosis of infectious diseases, the efficacy of all known current anti-infective agents is threatened by the spread of drug-resistant forms of the pathogens. Hence, there remains an urgent need to develop anti-infective agents that target drug-resistant pathogens. In Silico Models for Drug Discovery presents a comprehensive look at the role in silico models play in understanding infectious diseases and in developing novel therapeutics to treat them. Written by leading experts in the field, chapters cover topics such as techniques to derive novel antimicrobial targets, methods of interpreting polypharmacology-based drug target networks, and molecular dynamics techniques used to compute binding energies of drugs to their target proteins, to name a few. Written in the successful Methods in Molecular Biology (TM) series or in review article format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, In Silico Models for Drug Discovery seeks to serve both professionals and novices involved in the study and treatment of infectious diseases.
The plant' is often the most neglected part of plant-based medicine. Throughout time, humans have searched, collected, and effectively used plants for healing. Currently, the medicinal plant-based business is flourishing at a dramatic pace and at the expense of an already declining population of plant species, many of which are on the verge of extinction. In spite of this history and popularity, the mystery of what transforms a plant into a medicinal plant persists, and there are chronic problems with ensuring the safety and efficacy of medicinal plant products. Therefore, there is a real need for a full characterization of medicinal plant species and for the development and application of novel technologies for the production of plant-based medicines. This book highlights some of the recent advances and new approaches to the development of technologies for plant-based medicines and is intended to stimulate new discussions among researchers, regulatory authorities, and pharmaceutical organizations, leading to significant advancements in the field.
The inspiration for this text was the 1988 volume by Alder and Zbinden, written before the ICH harmonization process for drug safety evaluation (or its ISO analog for device biocompatibility evaluation) had been initiated or come to force. Since then, much has changed in both the world and practice of medicine and the regulation of drugs. The intent of this volume is to provide similar guidance as to what nonclinical safety assessment tests need to be performed to move a drug into man, through development and to market approved (this intent was subsequently extended to cover the closely related medical device biotechnology, and combination product fields) in a concise, abbreviated manner for all the major world market countries.
An in-depth exploration of the applications of plant bioactive metabolites in drug research and development Highlighting the complexity and applications of plant bioactive metabolites in organic and medicinal chemistry, "Plant Bioactives and Drug Discovery: Principles, Practice, and Perspectives" provides an in-depth overview of the ways in which plants can inform drug research and development. An edited volume featuring multidisciplinary international contributions from acclaimed scientists researching bioactive natural products, the book provides an incisive overview of one of the most important topics in pharmaceutical studies today. With coverage of strategic methods of natural compound isolation, structural manipulation, natural products in clinical trials, quality control, and more, and featuring case studies on medicinal plants, the book serves as a definitive guide to the field of plant biodiversity as it relates to medicine. In addition, chapters on using natural products as drugs that target specific disease areas, including neurological disorders, inflammation, infectious diseases, and cancer, illustrate the myriad possibilities for therapeutic applications. Wide ranging and comprehensive, "Plant Bioactives and Drug Discovery" also includes important information on marketing, regulations, intellectual property rights, and academic-industry collaboration as they relate to plant-based drug research, making it an essential resource for advanced students and academic and industry professionals working in biochemical, pharmaceutical, and related fields.
Attention has recently turned to using plants as hosts for the production of commercially important proteins. The twelve case studies in this volume present successful strategies for using plants to produce industrial and pharmaceutical proteins and vaccine antigens. They examine in detail projects that have commercial potential or products that have already been commercialized, illustrating the advantages that plants offer over bacterial, fungal or animal cell-culture hosts. There are many indications that plant protein production marks the beginning of a new paradigm for the commercial production of proteins that, over the next decade, will expand dramatically.
This volume is intended to provide the reader with a breadth of understanding regarding the many challenges faced with the formulation of poorly water-soluble drugs as well as in-depth knowledge in the critical areas of development with these compounds. Further, this book is designed to provide practical guidance for overcoming formulation challenges toward the end goal of improving drug therapies with poorly water-soluble drugs. Enhancing solubility via formulation intervention is a unique opportunity in which formulation scientists can enable drug therapies by creating viable medicines from seemingly undeliverable molecules. With the ever increasing number of poorly water-soluble compounds entering development, the role of the formulation scientist is growing in importance. Also, knowledge of the advanced analytical, formulation, and process technologies as well as specific regulatory considerations related to the formulation of these compounds is increasing in value. Ideally, this book will serve as a useful tool in the education of current and future generations of scientists, and in this context contribute toward providing patients with new and better medicines.
In the literature, several terms are used synonymously to name the topic of this book: chem-, chemi-, or chemo-informatics. A widely recognized de- nition of this discipline is the one by Frank Brown from 1998 (1) who defined chemoinformatics as the combination of "all the information resources that a scientist needs to optimize the properties of a ligand to become a drug. " In Brown's definition, two aspects play a fundamentally important role: de- sion support by computational means and drug discovery, which distinguishes it from the term "chemical informatics" that was introduced at least ten years earlier and described as the application of information technology to ch- istry (not with a specific focus on drug discovery). In addition, there is of course "chemometrics," which is generally understood as the application of statistical methods to chemical data and the derivation of relevant statistical models and descriptors (2). The pharmaceutical focus of many developments and efforts in this area-and the current popularity of gene-to-drug or si- lar paradigms-is further reflected by the recent introduction of such terms as "discovery informatics" (3), which takes into account that gaining kno- edge from chemical data alone is not sufficient to be ultimately successful in drug discovery. Such insights are well in accord with other views that the boundaries between bio- and chemoinformatics are fluid and that these d- ciplines should be closely combined or merged to significantly impact b- technology or pharmaceutical research (4).
Polymer Based Drug Delivery Systems; E. Piskin. Recent Advances and Industrial Applications of Microencapsulation; S. Benita. Recent Advances in Nanoparticles and Nanospheres; J. Kreuter. Evaluation and Formulation of Biodegradable Levodopa Microspheres Using 32 Factorial Design; B. Arica, et al. Surface-Modified Phospholipid-Stabilized Emulsions as Targeted Systems for Inhibition of Metastatic Cancer; M.J. Groves, X. Gao. Physical Characterization and Stability of a Microemulsion for Potential Oral Administration of a Peptide; A. Turkyilmaz, et al. Urea Permeation through Complex Coacervate Membranes; S. Peker, et al. Bacterial Polyhydroxyalkanoates: Biosynthesis, Screening and Characterization; I. Gursel, N.G. Alaeddinoglu. Antibiotic Release from Biodegradable PHV Microparticles; D. Sendil, et al. Drug Carrier Systems for Biotechnology Derived Products; F. OEner. Tissue Engineering of Liver; Y.M. Elcin. An In-depth Characterization of BHK Cell Lines; A. Stacey, et al. Investigation of Biological and Polymeric Material Using Atomic Force Microscopy; H. Zareie, et al. The Future Potential for the Use of Adjuvants in Human Vaccines; D. Stewart-Tull. 11 Additional Articles. Index.
Founded in 1959 by its current Editor, the series has moved from its initial focus on medicinal chemistry to a much wider scope. Today it encompasses all fields concerned with the development of new therapeutic drugs and the elucidation of their mechanisms of action, reflecting the increasingly complex nature of modern drug research. Invited authors present their biological, chemical, biochemical, physiological, immunological, pharmaceutical, toxicological, pharmacological and clinical expertise in carefully written reviews and provide the newcomer and the specialist alike with an up-to-date comprehensive list of prime references. Each volume of Progress in Drug Research contains fully cross-referencing indices which link the books together, forming a virtually encyclopaedic work. The series thus serves as an important, time-saving source of information for researchers concerned with drug research and all those who need to keep abreast of the many recent developments in the quest for new and better medicines.
This book describes 200 bio-polymers, including the most recent and advanced nanotechnology applications. The applications of various bio-medical and other future potential uses are covered and examined in depth. Systematic discussion of current leading natural polymers is also included.
The aim of this book is to present a range of analytical methods that can be used in formulation design and development and focus on how these systems can be applied to understand formulation components and the dosage form these build. To effectively design and exploit drug delivery systems, the underlying characteristic of a dosage form must be understood--from the characteristics of the individual formulation components, to how they act and interact within the formulation, and finally, to how this formulation responds in different biological environments. To achieve this, there is a wide range of analytical techniques that can be adopted to understand and elucidate the mechanics of drug delivery and drug formulation. Such methods include e.g. spectroscopic analysis, diffractometric analysis, thermal investigations, surface analytical techniques, particle size analysis, rheological techniques, methods to characterize drug stability and release, and biological analysis in appropriate cell and animal models. Whilst each of these methods can encompass a full research area in their own right, formulation scientists must be able to effectively apply these methods to the delivery system they are considering. The information in this book is designed to support researchers in their ability to fully characterize and analyze a range of delivery systems, using an appropriate selection of analytical techniques. Due to its consideration of regulatory approval, this book will also be suitable for industrial researchers both at early stage up to pre-clinical research.
This monograph is devoted to different aspects associated with citric acid, inorganic citrates and their aqueous and organic solutions. It includes information about properties, occurrence and technological applications of citric acid and inorganic citrates. Phase equilibria - melting, freezing, boiling, vapour pressures, solubilities of citric acid in water, organic solvents and ternary systems are presented, correlated, and analyzed. Dynamic properties - viscosities, diffusion coefficients, electrical conductivities and surface tensions are examined. Mathematical representations of citric acid dissociation, in electrolyte solutions and in buffers are discussed. Citric acid chemistry - syntheses of citric acid, neutralization, degradation, oxidation, esterification, formation of anhydrides, amides and citrate-based siderophores is reviewed.
Long acting veterinary formulations play a significant role in animal health, production and reproduction within the animal health industry. Such technologies offer beneficial advantages to the veterinarian, farmer and pet owner. These advantages have resulted in them growing in popularity in recent years. The pharmaceutical scientist is faced with many challenges when innovating new products in this demanding field of controlled release. This book provides the reader with a comprehensive guide on the theories, applications, and challenges associated with the design and development of long acting veterinary formulations. The authoritative chapters of the book are written by some of the leading experts in the field. The book covers a wide scope of areas including the market influences, preformulation, biopharmaceutics, in vitro drug release testing and specification setting to name but a few. It also provides a detailed overview of the major technological advances made in this area. As a result this book covers everything a formulation scientist in industry or academia, or a student needs to know about this unique drug delivery field to advance health, production and reproduction treatment options and benefits for animals worldwide."
Introduction to Fragment-Based Drug Discovery, by Daniel A. Erlanson Fragment Screening Using X-Ray Crystallography, by Thomas G. Davies and Ian J. Tickle Hsp90 Inhibitors and Drugs from Fragment and Virtual Screening, by Stephen Roughley, Lisa Wright, Paul Brough, Andrew Massey and Roderick E. Hubbard Combining NMR and X-ray Crystallography in Fragment-Based Drug Discovery: Discovery of Highly Potent and Selective BACE-1 Inhibitors, by Daniel F. Wyss, Yu-Sen Wang, Hugh L. Eaton, Corey Strickland, Johannes H. Voigt, Zhaoning Zhu and Andrew W. Stamford Combining Biophysical Screening and X-Ray Crystallography for Fragment-Based Drug Discovery, by Michael Hennig, Armin Ruf and Walter Huber Targeting Protein Protein Interactions and Fragment-Based Drug Discovery, by Eugene Valkov, Tim Sharpe, May Marsh, Sandra Greive and Marko Hyvonen Fragment Screening and HIV Therapeutics, by Joseph D. Bauman, Disha Patel and Eddy Arnold Fragment-Based Approaches and Computer-Aided Drug Discovery, by Didier Rognan"
The concept of focal controlled drug delivery has been applied for treating illnesses that are localized to a certain tissue or organ. These delivery systems are applied directly to the diseased site and deliver a desired dose for an extended time period while minimizing systemic distribution of toxic drug. Controlled drug delivery systems have been focused on oral extended release formulations and on systemic delivery of small drugs and peptides. Despite the upsurge of interest in focal targeted drug delivery, there is currently no single reference text on the subject. By comparison, there are numerous authored and edited books on oral, systemic and transdermal drug delivery or books on biodegradable polymers as drug carriers. Thus, the aim of Focal Drug Delivery is to bring together leading experts and researchers in the field to provide an authoritative account of the essential pharmaceutical, technological, physiological and biological sciences underpinning the topic. In addition, the book will review advances in treatment options for diseases localized at a certain tissue or organ.
The series Structure and Bonding publishes critical reviews on topics of research concerned with chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience. Thus each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years should be presented using selected examples to illustrate the principles discussed. A description of the physical basis of the experimental techniques that have been used to provide the primary data may also be appropriate, if it has not been covered in detail elsewhere. The coverage need not be exhaustive in data, but should rather be conceptual, concentrating on the new principles being developed that will allow the reader, who is not a specialist in the area covered, to understand the data presented. Discussion of possible future research directions in the area is welcomed. Review articles for the individual volumes are invited by the volume editors. Readership: research scientists at universities or in industry, graduate students Special offer for all customers who have a standing order to the print version of Structure and Bonding, we offer free access to the electronic volumes of the Series published in the current year via SpringerLink. |
![]() ![]() You may like...
Proceedings of the American Association…
Assoc for the Advancement of Science
Hardcover
The Unsustainable American State
Lawrence Jacobs, Desmond King
Hardcover
R2,039
Discovery Miles 20 390
This Is How It Is - True Stories From…
The Life Righting Collective
Paperback
Ward 11, Precinct 1, City of Boston…
Boston Election Department
Paperback
R624
Discovery Miles 6 240
Africa's Business Revolution - How to…
Acha Leke, Mutsa Chironga, …
Hardcover
![]()
|