![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Pharmaceutical technology
This book is the first of two volumes that offer a comprehensive, up-to-date account of current knowledge regarding high-density lipoprotein (HDL), the changes that occur in HDL under different conditions, the clinical applications of HDL, and means of enhancing HDL functionality. HDL comprises a diverse group of lipoproteins and its composition and metabolism are dynamic. In this volume, the focus is on the changes observed in HDL under different health statuses, with particular attention to the functional and structural correlations of HDL and apolipoprotein A-1. The impacts of a wide variety of factors on HDL are examined in depth, covering, for example, diet, exercise, smoking, age, diverse diseases, and different forms of environmental pollution. It has long been known that HDL has anti-atherosclerotic and antidiabetic properties, and more recently its anti-aging activities have been recognized. These benefits of HDL are highly dependent on its lipids, proteins, apolipoproteins, and enzymes, and specifically their composition and ratios. In documenting the latest knowledge in this field, this volume will be of interest to both researchers and clinicians.
This book presents the proceedings of the 39th annual Midwest Biopharmaceutical Statistics Workshop (MBSW), held in Muncie, Indiana on May 16-18, 2016. It consists of selected peer- reviewed and revised papers on topics ranging from statistical applications in drug discovery and CMC to biomarkers, clinical trials, and statistical programming. All contributions feature original research, and together they cover the full spectrum of pharmaceutical R&D - with a special focus on emergent topics such as biosimilarity, bioequivalence, clinical trial design, and subgroup identification. Founded in 1978, the MBSW has provided a forum for statisticians to share knowledge, research, and applications on key statistical topics in pharmaceutical R&D for almost forty years, with the 2016 conference theme being "The Power and 3 I's of Statistics: Innovation, Impact and Integrity." The papers gathered here will be of interest to all researchers whose work involves the quantitative aspects of pharmaceutical research and development, including pharmaceutical statisticians who want to keep up-to-date with the latest trends, as well as academic statistics researchers looking for areas of application.
Absorption, Distribution, Metabolism and Excretion (ADME) processes and their relationship with the design of dosage forms and the success of pharmacotherapy form the basis of this upper level undergraduate/graduate textbook. As an introduction oriented to pharmacy students, it is also written for scientist from different fields outside of pharmaceutics. (e.g. material scientist, material engineers, medicinal chemists) who might be working in a positions in pharmaceutical companies or whose work might benefit from basic training in the ADME concepts and some biological background. Pedagogical features such as objectives, keywords, discussion questions, summaries and case studies add valuable teaching tools. This book will provide not only general knowledge on ADME processes but also an updated insight on some hot topics such as drug transporters, multi-drug resistance related to pharmacokinetic phenomena, last generation pharmaceutical carriers (nanopharmaceuticals), in vitro and in vivo bioequivalence studies, biopharmaceuticals, pharmacogenomics, drug-drug and food-drug interactions, and in silico and in vitro prediction of ADME properties. In comparison with other similar textbooks, around half of the volume would be focused on the relationship between expanding scientific fields and ADME processes. Each of these burgeoning fields has a separate chapter in the second part of the volume, and was written with leading experts on the correspondent topic, including scientists and academics from USA and UK (Duquesne University School of Pharmacy, Indiana University School of Medicine, University of Utah College of Pharmacy, University of Maryland, University of Bath). Additionally, each of the initial chapters dealing with the generalities of drug absorption, distribution, metabolism and excretion would include relevant, classic examples related to each topic with appropriate illustrations (e.g. importance of active absorption of levodopa, implications in levodopa administration, drug drug interactions and food drug interactions emerging from the active uptake; intoxication with paracetamol as a result of glutathione depletion, CYP induction and its relationship with acute liver failure caused by paracetamol, etc). ADME Processes and Pharmaceutical Sciences is written as a core textbook for ADME processes, pharmacy, pharmacokinetics, drug delivery, biopharmaceutics, drug disposition, drug design and medicinal chemistry courses.
This book highlights the recent advances of thermodynamics and biophysics in drug delivery nanosystems and in biomedical nanodevices. The up-to-date book provides an in-depth knowledge of bio-inspired nanotechnological systems for pharmaceutical applications. Biophysics and thermodynamics, supported by mathematics, are the locomotive by which the drug transportation and the targeting processes will be achieved under the light of the modern pharmacotherapy. They are considered as scientific tools that promote the understanding of physicochemical and thermotropic functionality and behavior of artificial cell membranes and structures like nanoparticulate systems. Therefore, this book focusses on new aspects of biophysics and thermodynamics as important elements for evaluating biomedical nanosystems, and it correlates their physicochemical, biophysical and thermodynamical behaviour with those of a living organism. In 2018, Prof. Demetzos was honored with an award by the Order of Sciences of the Academy of Athens for his scientific contribution in Pharmaceutical Nanotechnology.
This book proposes the importance of new systems of drug design and delivery based on cancer pathophysiology in addition to cancer molecular and cellular biology. The current studies based on molecular and cellular biology while ignoring pathophysiology and pharmacology may be leading the development of antitumor drugs in the wrong direction and wasting a lot of money. Although there have been numerous reports of genetic and phenotypic changes in tumors, a large body of pathological and clinical evidence supports the conclusion that there are no pivotal changes in tumor cells that distinguish them consistently and reliably from normal dividing cells. Unlike using antibiotics against bacterial infection, therefore, anticancer agents (ACAs) need to be delivered selectively to tumor tissues and should be kept there long enough to reproduce the concentrations they reach in the Petri dish, which is a closed space where the cytocidal effects of any anticancer agents (ACAs) including molecular targeting agents are very strong. In the body, however, administered ACAs are cleared with the passage of time. Furthermore, most human cancers possess abundant stroma that hinders the penetration of drugs into the tumor microenvironment. Therefore, to overcome these difficulties, novel drug delivery systems have been designed, such as nanoparticles and ACA conjugated antibodies to stromal components and to cancer cell surface antigens. These advances are described in this book after the first section, which describes core features of the pathophysiology of the cancer microenvironment, on which these new developments are based.
The first chapter describes the oldest method of communication between living systems in Nature, the chemical language. Plants, due to their lack of mobility, have developed the most sophisticated way of chemical communication. Despite that many examples involve this chemical communication process - allelopathy, there is still a lack of information about specific allelochemicals released into the environment, their purpose, as well as in-depth studies on the chemistry underground. These findings are critical to gain a better understanding of the role of these compounds and open up a wide range of possibilities and applications, especially in agriculture and phytomedicine. The most relevant aspects regarding the chemical language of plants, namely, kind of allelochemicals have been investigated, as well as their releasing mechanisms and their purpose, are described in this chapter. The second chapter is focused on the natural products obtained from Hypericum L., a genus of the family Hypericaceae within the dicotyledones. Hypericum has been valued for its important biological and chemical properties and its use in the treatment of depression and as an antibacterial has been well documented in primary literature and ethnobotanical reports. The present contribution gives a comprehensive summary of the chemical constituents and biological effects of this genus. A comprehensive account of the chemical constituents including phloroglucinol derivatives, xanthones, dianthrones, and flavonoids is included. These compounds show a diverse range of biological activities that include antimicrobial, cytotoxic, antidepressant-like, and antinociceptive effects. The third chapter addresses microtubule stabilizers, which are a mainstay in the treatment of many solid cancers and are often used in combination with molecularly targeted anticancer agents and immunotherapeutics. The taccalonolides are a unique class of such microtubule stabilizers isolated from plants of Tacca species that circumvent clinically relevant mechanisms of drug resistance. Although initial reports suggested that the microtubule stabilizing activity of the taccalonolides is independent of direct tubulin binding, additional studies have found that potent C-22,23 epoxidated taccalonolides covalently bind the Aspartate 226 residue of -tubulin and that this interaction is critical for their microtubule stabilizing activity. Some taccalonolides have demonstrated in vivo antitumor efficacy in drug-resistant tumor models with exquisite potency and long-lasting antitumor efficacy as a result of their irreversible target engagement. The recent identification of a site on the taccalonolide scaffold that is amenable to modification has provided evidence of the specificity of the taccalonolide-tubulin interaction and the opportunity to further optimize the targeted delivery of the taccalonolides to further improve their anticancer efficacy and potential for clinical development.
Intelligent Nanomaterials for Drug Delivery Applications discusses intelligent nanomaterials with a particular focus on commercial and premarket tools. The book looks at the applications of intelligent nanomaterials within the field of medicine and discusses their future role. This includes the use of intelligent nanomaterials for drugs used in cardiovascular and cancer treatments and examines the promising market of nanoparticles for biomedical and biosensing applications. This resource will be of great interest to scientists and researchers involved in multiple disciplines, including micro- and nano-engineering, bionanotechnology, biomedical engineering, and nanomedicine, as well as pharmaceutical and biomedical industries.
This third edition volume expands on the previous editions with new topics that cover drug discovery through translational bioinformatics, informatics, clinical research informatics, as well as clinical informatics. The chapters discuss new methods to study target identification, genome analysis, cheminformatics, protein analysis, and text mining. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials, software workflows, reagents and on-line resources, together with step-by-step, readily reproducible laboratory and computational protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and thorough, Bioinformatics and Drug Discovery, Third Edition is a valuable resource for anyone interested in drug design, including academicians (biologists, informaticists and data scientists, chemists, and biochemists), clinicians, and pharmaceutical scientists.
Dendrimers are repeatedly branched and roughly spherical large molecules. They can be used in various medical applications, such as anticancer polymeric nanomedicines and nanocarriers, gene carriers and vectors in gene delivery, contrast agents for molecular imaging and vaccines against infectious diseases and cancer. The highly branched, multivalent nature and molecular architecture of dendrimers make them ideal tools for a variety of tissue engineering applications. This book describes different categories of dendrimers, their biomedical and physico-chemical applications as well as convergent and divergent syntheses, click chemistry and ligation strategies. It is a rich source of information for researchers in biochemistry and pharmacology working on drug development as well as for organic chemists who are engaged in synthesis of dendrimers.
The Textbook of Ion Channels is a set of three volumes that provides a wide-ranging reference source on ion channels for students, instructors, and researchers. Ion channels are membrane proteins that control the electrical properties of neurons and cardiac cells, mediate the detection and response to sensory stimuli like light, sound, odor, and taste, and regulate the response to physical stimuli like temperature and pressure. In non-excitable tissues, ion channels are instrumental for the regulation of basic salt balance that is critical for homeostasis. Ion channels are located at the surface membrane of cells, giving them the unique ability to communicate with the environment, as well as the membrane of intracellular organelles, allowing them to regulate internal homeostasis. Ion channels are fundamentally important for human health and diseases, and are important targets for pharmaceuticals in mental illness, heart disease, anesthesia, pain and other clinical applications. The modern methods used in their study are powerful and diverse, ranging from single ion-channel measurement techniques to models of ion channel diseases in animals, and human clinical trials for ion channel drugs. Volume II starts with ion channel taxonomy and features coverage of major ion channel families and describes the physiological role, structural components, gating mechanisms and biophysics, permeation and selectivity, regulation, pharmacology and roles in disease mechanisms. Channels in this volume include voltage-activated sodium, calcium and potassium channels, inward-rectifier and two-pore domain potassium channels, calcium-activated potassium channels, cyclic-nucleotide gated channels, pacemaker ion channels, chloride channels, the ligand-gated receptors activated by acetylcholine, glutamate, 5-HT3, GABA and glycine, acid-sensing channels, P2X receptors, TRP channels, store-operated channels, pressure-activated piezo channels, ryanodine receptors and proton channels. All three volumes give the reader an introduction to fundamental concepts needed to understand the mechanism of ion channels, a guide to the technical aspects of ion channel research, offer a modern guide to the properties of major ion channel families, and include coverage of key examples of regulatory, physiological, and disease roles for ion channels.
The Textbook of Ion Channels is a set of three volumes that provides a wide-ranging reference source on ion channels for students, instructors, and researchers. Ion channels are membrane proteins that control the electrical properties of neurons and cardiac cells, mediate the detection and response to sensory stimuli like light, sound, odor, and taste, and regulate the response to physical stimuli like temperature and pressure. In non-excitable tissues, ion channels are instrumental for the regulation of basic salt balance that is critical for homeostasis. Ion channels are located at the surface membrane of cells, giving them the unique ability to communicate with the environment, as well as the membrane of intracellular organelles, allowing them to regulate internal homeostasis. Ion channels are fundamentally important for human health and diseases, and are important targets for pharmaceuticals in mental illness, heart disease, anesthesia, pain and other clinical applications. The modern methods used in their study are powerful and diverse, ranging from single ion-channel measurement techniques to models of ion channel diseases in animals, and human clinical trials for ion channel drugs. Volume III includes coverage of key ion channel regulators and their mechanisms, the role of ion channels working in concert in selected physiological systems, and examples of ion channel mutations and dysfunction in a selection of diseases. Chapters on ion channel regulation include splice variants, calcium-calmodulin regulation, regulation by G-proteins, and lipids. A selection of ion channels in physiological systems includes ion channels of the heart, ion channels in immune cells and their role in pancreatic beta cells and regulation of insulin secretion, and the role of channels in sperm and eggs. While disease mechanisms are integrated into the chapters of Volume II, Volume III offers special consideration of ion channels in epilepsy, cystic fibrosis, and pain syndromes. All three volumes give the reader an introduction to fundamental concepts needed to understand the mechanism of ion channels, a guide to the technical aspects of ion channel research, offer a modern guide to the properties of major ion channel families, and include coverage of key examples of regulatory, physiological, and disease roles for ion channels.
This book begins with an introduction of pragmatic cluster randomized trials (PCTs) and reviews various pragmatic issues that need to be addressed by statisticians at the design stage. It discusses the advantages and disadvantages of each type of PCT, and provides sample size formulas, sensitivity analyses, and examples for sample size calculation. The generalized estimating equation (GEE) method will be employed to derive sample size formulas for various types of outcomes from the exponential family, including continuous, binary, and count variables. Experimental designs that have been frequently employed in PCTs will be discussed, including cluster randomized designs, matched-pair cluster randomized design, stratified cluster randomized design, stepped-wedge cluster randomized design, longitudinal cluster randomized design, and crossover cluster randomized design. It demonstrates that the GEE approach is flexible to accommodate pragmatic issues such as hierarchical correlation structures, different missing data patterns, randomly varying cluster sizes, etc. It has been reported that the GEE approach leads to under-estimated variance with limited numbers of clusters. The remedy for this limitation is investigated for the design of PCTs. This book can assist practitioners in the design of PCTs by providing a description of the advantages and disadvantages of various PCTs and sample size formulas that address various pragmatic issues, facilitating the proper implementation of PCTs to improve health care. It can also serve as a textbook for biostatistics students at the graduate level to enhance their knowledge or skill in clinical trial design. Key Features: Discuss the advantages and disadvantages of each type of PCTs, and provide sample size formulas, sensitivity analyses, and examples. Address an unmet need for guidance books on sample size calculations for PCTs; A wide variety of experimental designs adopted by PCTs are covered; The sample size solutions can be readily implemented due to the accommodation of common pragmatic issues encountered in real-world practice; Useful to both academic and industrial biostatisticians involved in clinical trial design; Can be used as a textbook for graduate students majoring in statistics and biostatistics.
This book is the second of two volumes that offer a comprehensive, up-to-date account of current knowledge regarding high-density lipoprotein (HDL), the changes that occur in HDL under different conditions, the clinical applications of HDL, and means of enhancing HDL functionality. In this volume, the focus is on the improvement of HDL, enhancement of its functionality, and the use of HDL for therapeutic purposes. In the first section, up-to-date information is provided on such topics as the tumor regression-promoting and antidiabetic activities of reconstituted HDL containing V156K apolipoprotein A-I, the enhancement of HDL effects by high doses of vitamin C, the benefits derived from incorporation of growth hormones 1 and 2 into rHDL, and the biological functions of omega-3 linolenic acid in rHDL. The enhancement of HDL functionality by policosanol and the resultant benefits are thoroughly examined in a separate section. Readers will also find the latest information on clinical applications of HDL. Here, specific topics include the enhancement of adenoviral gene delivery and the delivery of rapamycin. In documenting the latest knowledge in this field, this volume will be of interest to both researchers and clinicians.
This second edition of Clinical Use of Anti-Infective Agents provides a comprehensive overview of current approaches to using drugs to treat infections, including historical perspectives, definitions, and discussion of pharmacokinetics and pharmacodynamics and their uses. It includes a detailed explanation of different classes of drugs, outlining their spectrum, pharmacokinetics, side effects, and dosing in clinical settings. This book has been designed as a reference tool for pharmacists, clinicians, nurse practitioners, and clinical microbiologists, as well as a teaching vehicle for students studying infection and patient treatment. Each section includes references allowing for in-depth study of specific agents, Q&As, and illustrative case studies accompanied by commentary on how to approach patients and organisms, optimal methods of making a diagnosis, and prescribing treatment.
Foreseeing and planning for all of the possibilities and pitfalls involved in bringing a biotechnology innovation from inception to widespread therapeutic use takes strong managerial skills and a solid grounding in biopharmaceutical research and development procedures. Unfortunately there has been a dearth of resources for this aspect of the field. Until now. Focusing on the management of healthcare-related biotech, from conception through the product's regulatory approval and entire life cycle, Healthcare Biotechnology: A Practical Guide provides a practical, applicable resource to assist all health-care related biotech professionals in their day-to-day activities from the lab to the boardroom. Divided into six sections, the book begins with current systems and recent progress and controversy, major players and products, and a comparison with the pharmaceutical industry. It covers intellectual property protection and management, the innovation cycle, patent application, commercialization, and competition. Coverage includes funding, partnering, cash-intensive activities, financing alternatives, and the complexities of alliance implementation and management. It highlights research, development, and biomanufacturing; and examines clinical trial design and regulations; "fast-track" approvals; and patient recruitment as well as production platforms and processes, costs, strategies, and timelines. It investigates marketing including planning, promotion, pricing, supply chain management, and bio-brand lifecycle management. It concludes with tips on running the business, offering diverse biobusiness models and reasonable expectations from inception through maturity and decline. An indispensible guide, this book offers more than 40 figures, 220 tables, and 180 references as well as a list of abbreviations and a business plan outline. Each chapter contains 10 questions to reinforce the material covered and 10 exercises
This second edition further develops the principles of applying kinetic principles to drug metabolizing enzymes and transporters. Chapters are divided into six sections detailing fundamental principles of enzyme kinetics, enzyme and transporter structures, highlighting specific oxidative and conjugative drug metabolizing enzymes and drug transporters, modeling approaches for drug metabolizing enzymes and transporters, understanding of variability both experimental and interindividual (pharmacogenomic), and expanded case studies that provide real life examples of applying these principles. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, in some cases step-by-step instructions with readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls with extensive cross referencing to assist in learning. Authoritative and fully updated, Enzyme Kinetics in Drug Metabolism: Fundamentals and Applications, Second Edition serves as a practical teaching tool for novice and advanced scientists interested in the fundamental concepts.
Worldwide interest in Ayurveda is on the rise, ever since the World Health Organization adopted the Alma Ata Declaration in 1978. Ayurveda is increasingly being adopted and many phytotherapy schools in Europe and the Americas teach Ayurveda as a wellness system. Considering the prominent position that Aá¹£á¹Äá¹…gahá¹›daya occupies in Ayurveda, a scientific synopsis of this masterpiece is now presented before the world of Ayurveda. In eight comprehensive chapters, Aá¹£á¹Äá¹…gahá¹›daya: A Scientific Synopsis of the Classic Ayurveda Text presents a lucid summary of the teachings of VÄgbhaá¹a. Ayurvedic view of the human body, basic principles of Ayurveda, surgical armamentarium, diagnosis and treatment of diseases, herbs and other medicinal substances used in the preparation of various dosage forms, ayurvedic pharmaceutialcs, ayurvedic approach to food fortification, salient features of Aá¹£á¹Äá¹…gahá¹›daya and a roadmap for the future are among the topics discussed. Key Features: Presents the ayurvedic view of conception and the human body. Discusses aspects of ayurvedic pharmaceuticals. Examines diagnosis of diseases, lines of treatment, prognosis of diseases, signs of imminent death, management of mishaps and treatment of new diseases. The voluminous information pertaining to the subjects of the various chapters is presented in the form of many tables for ready reference and quick survey. This book provides a helping hand to those interested in rediscovering the teachings of VÄgbhaá¹a and is a great resource for researchers of medicine, traditional and alternative medicine, pharmacology and drug discovery.
This book explores technological innovation in family firms, seeking to reconstruct the links between the heterogeneous dimensions of family businesses and their innovative behaviour. Building on and examining the traditional view of family firms as conservative, this book contributes to knowledge surrounding the puzzling role of family firms in technological innovation, with particular focus on the Italian pharmaceutical industry. The authors explore technological advances within the industry in connection with various features of family governance. This thought-provoking study is divided into two parts, the first part providing an overview of current literature on the topic, and the second part analysing the findings of empirical investigation in a specific industry setting. Practitioners and academics of business strategy will find this book extremely useful as it combines both solid theoretical reasoning and robust empirical analysis.
Aging is an inevitable part of life and is becoming a worldwide social, economic and health problem. This is mainly due to the fact that the increasing proportion of individuals in the advanced age category have a higher probability of developing age-related disorders, such as type II diabetes mellitus, cardiovascular disorders, sarcopenia, and neurodegenerative conditions. New therapeutic approaches are still needed to decrease or slow the effects of such diseases. Advances in -omic technologies, such as genomics, transcriptomics, proteomics and metabolomics, have significantly advanced our understanding of disease in multiple medical areas, as the analysis of multiple molecular networks has simultaneously provided a more integrated view of disease pathways. It is hoped that emerging hits from these analyses might be prioritized for further screening as potential novel drug targets for increasing the human healthspan in line with the lifespan. In turn, this will lead to new therapeutic strategies as well as drug development projects by the pharmaceutical industry. This book presents a series of reviews describing studies that have resulted in identification of new potential drug targets for age-related disorders. Much of this information has come from -omic comparisons of healthy and disease states or from testing the effects of new therapeutic approaches. Authored by experts from around the globe, each chapter is presented in the context of specific chronic diseases or therapeutic strategies. This book is designed for researchers in the areas of aging and chronic disease, as well as clinical scientists, physicians and stakeholders in major drug companies.
The microneedle field has been expanding exponentially with innovative designs and various applications, thus capturing the interest of academic industry and regulatory sectors. Microneedles: The Future of Drug Delivery equips readers with a comprehensive understanding of microneedles; from percutaneous absorption to microneedles production, characterization, applications in drug delivery and diagnosis, to practical perspectives on the development, manufacturing, regulatory issues, and commercialization of microneedles. This book is written by a single author and thus provides complex information in a simple, elegant and cohesive style. The book is intended for graduate students, researchers, scientists and engineers working in the pharmaceutical, medical, cosmeceutical, and biotechnology industry.
Real-world evidence (RWE) has been at the forefront of pharmaceutical innovations. It plays an important role in transforming drug development from a process aimed at meeting regulatory expectations to an operating model that leverages data from disparate sources to aid business, regulatory, and healthcare decision making. Despite its many benefits, there is no single book systematically covering the latest development in the field. Written specifically for pharmaceutical practitioners, Real-World Evidence in Drug Development and Evaluation, presents a wide range of RWE applications throughout the lifecycle of drug product development. With contributions from experienced researchers in the pharmaceutical industry, the book discusses at length RWE opportunities, challenges, and solutions. Features Provides the first book and a single source of information on RWE in drug development Covers a broad array of topics on outcomes- and value-based RWE assessments Demonstrates proper Bayesian application and causal inference for real-world data (RWD) Presents real-world use cases to illustrate the use of advanced analytics and statistical methods to generate insights Offers a balanced discussion of practical RWE issues at hand and technical solutions suitable for practitioners with limited data science expertise
Volume 22, entitled Metal Ions in Bio-Imaging Techniques, of the series Metal Ions in Life Sciences deals with metal ions as tools in imaging. This dates back to the first half of the past century, when barium sulfate was orally given to patients undergoing X-ray examination. The use of contrast agents has since developed into a large interdisciplinary field encompassing not only medicine, but also chemistry, material sciences, physics, biology, engineering, and computer sciences. MILS-22 provides deep and current insights in 17 stimulating chapters on the new research frontiers of this fast growing field on bio-imaging ... and beyond. For example, adding bio-sensing yields theranostic agents, meaning diagnosis and therapy linked in the same molecule; ions of Gd, Mn, Fe, Co, Ir, 99mTc, etc., are involved. Other important topics are, e.g., metal complexes in paramagnetic Chemical Exchange Transfer (paraCEST), radiometals for Positron Emission Tomography (PET) imaging, or paramagnetic metal ion probes for 19F magnetic resonance imaging. MILS-22 is written by 57 internationally recognized experts from 12 countries, that is, from the US via Europe to China. The impact of this vibrant research area is manifested by more than 2300 references and nearly 120 figures, mostly in color, and several informative tables. To conclude, Metal Ions in Bio-Imaging Techniques is an essential resource for scientists working in the wide range from material sciences, enzymology, analytic, organic, and inorganic biochemistry all the way through to medicine including the clinic ... not forgetting that also excellent information for teaching is provided.
General compendium of HDAC inhibitors with deep emphasis on toxicity issues of synthetic HDAC inhibitors Various groups of natural HDAC inhibitors, their representatives and premier sources Cyclic tetrapeptides of natural origin and their importance as cancer chemotherapeutic agents Hydroxamates and depsipeptides from natural sources and their promising role in cancer therapy Natural Flavonoids, their HDAC inhibitory tendency and marvellous anticancer activity Non-flavonoid natural HDAC inhibitors and their pleasing cytotoxic effects towards cancer models Combined therapy involving natural flavonoids with other anticancer molecules for synergistic and additive benefits against cancer models Non-flavonoid HDAC inhibitors and conventional drugs in collaborative mode against aggressive malignancies Nanotechnology based delivery of natural HDAC inhibitors for greater therapeutic efficacy over traditional combinatorial therapy
This book elaborates on drug delivery targeting via intracellular delivery, specifically through the Receptor Mediated Endocytosis (RME) approach, due to the involvement of cellular receptors in various grave diseases. Targeted delivery relies on two basic approaches, passive and active targeting. While passive targeting approaches have shown great promise, the improved selectivity achieved with active targeting approaches has resulted in significantly higher efficacy. Interestingly there are numerous strategies for active targeting, many of which are already highlighted in , Targeted Drug Delivery: Concepts and Applications. Nevertheless an exciting and practical strategy for active targeting, which could enable high intracellular delivery, is through exploitation of RME. Cells in the body express receptors to enable various physiological and biochemical processes. As a result, many of these receptors are overexpressed in pathological conditions, or newer receptors expressed due to defective cellular functioning. RME is based on exploitation of such receptors to achieve intracellular delivery. While targeted delivery can have manifold applications, in this book we focus on two major and challenging therapeutic areas; i) Cancer and ii) Infectious Diseases. Targeted Intracellular Drug Delivery by Receptor Medicated Endocytosis discusses the major receptors that are useful for targeted delivery for these afflictions. A major section of this book is dedicated to details regarding their occurrence and location, the recognition domain of the receptor, structure activity relationship of substrate /ligand for selective binding, ligands explored, antagonists for ligand binding and relevance of these aspects for therapy of cancer and infectious diseases. These facets are elucidated with the help of specific examples from academic research and also emphasize commercial products, wherever relevant. In vitro cellular models relied on for assessing receptor mediated cellular targeting and in vivo models depicting clinical efficacy are focused on in a separate section. Finally, we briefly discuss the regulatory and toxicity issues that may be associated specifically with the RME approach of intracellular drug delivery.
This book offers a fresh look on a variety of issues concerning herbal medicine - the methods of growing and harvesting various medicinal plants; their phytochemical content; medicinal usage; regulatory issues; and mechanism of action against myriad of human and animal ailments. 'Medicinal Plants: From Farm to Pharmacy' comprises chapters authored by renowned experts from academics and industry from all over the world. It provides timely, in-depth study/analysis of medicinal plants that are already available in the market as supplements or drug components, while also introducing several traditional herbs with potential medicinal applications from various regions of the world. The book caters to the needs of a diverse group of readers: plant growers, who are looking for ways to enhance the value of their crops by increasing phytochemical content of plant products; biomedical scientists who are studying newer applications for crude herbal extracts or isolated phytochemicals; clinicians and pharmacologists who are studying interactions of herbal compounds with conventional treatment modalities; entrepreneurs who are navigating ways to bring novel herbal supplements to the market; and finally, natural medicine enthusiasts and end-users who want to learn how herbal compounds are produced in nature, how do they work and how are they used in traditional or modern medicine for various disease indications. |
You may like...
PowerShell, IT Pro Solutions…
William R. Stanek, William Stanek
Hardcover
R1,434
Discovery Miles 14 340
Embedded Computing for High Performance…
Joao Manuel Paiva Cardoso, Jose Gabriel de Figueired Coutinho, …
Paperback
Innovations and Approaches for Resilient…
Vincenzo De Florio
Hardcover
R4,960
Discovery Miles 49 600
PowerShell for Administration, IT Pro…
William R. Stanek, William Stanek
Hardcover
R1,418
Discovery Miles 14 180
|