![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Powder technology
This is the fifth edition of the highly successful work first published in 1968, comprising two definitive volumes on particle characterisation. The first volume is devoted to sampling and particle size measurement, while surface area and pore size determination are reviewed in volume 2. Particle size and characterisation are central to understanding powder properties and behaviour. This book describes numerous potential measuring devices, how they operate and their advantages and disadvantages. It comprise a fully comprehensive treatise on the wide range of available equipment with an extensive literature survey, and a list of manufacturers and suppliers. The author's blend of academic and industrial experience results in a readable technical book with information on how to analyse, present, and extract useful information from data. This is an essential reference book for both industrial and academic research workers in a variety of areas including: pharmaceuticals, food science, pollution analysis and control, electronic materials, agricultural products, polymers, pigments and chemicals.
The NATO Advanced Study Institute on "Functional Gradient Materials and Surface Layers Prepared by Fine Particles Technology" was held in Kiev (Ukraine) on June 18- 28, 2000 where more than 90 participants, ranging from Ph.D. students to experienced senior scientists, met and exchanged ideas. This meeting was aimed at stimulating the research work across traditional disciplinary lines by bringing together scientists from diverse research areas related to functional gradient materials and surface layers. It also intended to give opportunities for initiating collaborative works between scientists from NATO and Partner countries and to trigger fruitful and exciting discussions between experienced and young researchers. In this respect, this NATO-ASI has been quite successful. The term of functional gradient materials which originates from Japan in the 1980's describes a class of engineering materials with spatially inhomogeneous microstructures and properties (MRS Bulletin, 1995,20, N Degreesl). These materials can be successfully utilized in various applications like electronic devices, optical films, anti wear and anti-corrosion coatings, thermal barrier coatings, biomaterials, to name only a few. Although these functional gradient materials are not fundamentally new, the use of nanoparticles in their fabrication and in surface layers as well has greatly improved their performances to meet challenging requirements for industrial applications.
This work describes the different operational regimes and the dominant mechanisms of flows in disperse systems.
Modern ceramic materials differ from the traditional materials which were only based on natural substances. It is now possible to prepare ceramics using a wide range of properties and as an area this field has evolved as a very broad scientific and technical field in its own right. In practice one encounters ceramics in practically all branches of materials science and the characteristics are so wide ranging that the common basis of these substances is not always immediately apparent. All ceramic materials are prepared by ceramic technology, and powder substances are used as the initial raw materials. Their physical properties are an expression not only of their composition, but primarily of their structure. Thus in order to fully understand the properties of ceramics, a knowledge of their structure is essential. This book is intended as a source of such knowledge. All the chapters are written by authors with vast experience in the various fields of ceramics who provide a detailed description of the interrelationships between the structure and behaviour of ceramic materials.
Since the publication of the first edition of Canada, and Australia have increased teach Handbook of Powder Science and Technology, ing, research, and training activities in areas the field of powder science and technology has related to particle science and technology. gained broader recognition and its various ar In addition, it is worth mentioning the many eas of interest have become more defined and books and monographs that have been pub focused. Research and application activities lished on specific areas of particle, powder, related to particle technology have increased and particle fluid by professional publishers, globally in academia, industry, and research technical societies and university presses. Also, institutions. During the last decade, many to date, there are many career development groups, with various scientific, technical, and courses given by specialists and universities on engineering backgrounds have been founded various facets of powder science and technol to study, apply, and promote interest in areas ogy."
These proceedings are the fifth in the series Traffic and Granular Flow, and we hope they will be as useful a reference as their predecessors. Both the realistic modelling of granular media and traffic flow present important challenges at the borderline between physics and engineering, and enormous progress has been made since 1995, when this series started. Still the research on these topics is thriving, so that this book again contains many new results. Some highlights addressed at this conference were the influence of long range electric and magnetic forces and ambient fluids on granular media, new precise traffic measurements, and experiments on the complex decision making of drivers. No doubt the "hot topics" addressed in granular matter research have diverged from those in traffic since the days when the obvious analogies between traffic jams on highways and dissipative clustering in granular flow intrigued both c- munities alike. However, now just this diversity became a stimulating feature of the conference. Many of us feel that our joint interest in complex systems, where many simple agents, be it vehicles or particles, give rise to surprising and fascin- ing phenomena, is ample justification for bringing these communities together: Traffic and Granular Flow has fostered cooperation and friendship across the scientific disciplines.
When bombarded with X-rays, solid materials produce distinct scattering patterns similar to fingerprints. X-ray powder diffraction is a technique used to fingerprint solid samples, which are then identified and cataloged for future use—much the way the FBI keeps fingerprints on file. The current database of some 70,000 material prints has been put to a broad range of uses, from the analysis of moon rocks to testing drugs for purity. Introduction to X-ray Powder Diffractometry fully updates the achievements in the field over the past fifteen years and provides a much-needed explanation of the state-of-the-art techniques involved in characterizing materials. It covers the latest instruments and methods, with an emphasis on the fundamentals of the diffractometer, its components, alignment, calibration, and automation. The first three chapters outline diffraction theory in clear language, accessible to both students and professionals in chemistry, physics, geology, and materials science. The book's middle chapters describe the instrumentation and procedures used in X-ray diffraction, including X-ray sources, X-ray detection, and production of monochromatic radiation. The chapter devoted to instrument design and calibration is followed by an examination of specimen preparation methods, data collection, and reduction. The final two chapters provide in-depth discussions of qualitative and quantitative analysis. While the material is presented in an orderly progression, beginning with basic concepts and moving on to more complex material, each chapter stands on its own and can be studied independently or used as a professional reference. More than 230 illustrations and tables demonstrate techniques and clarify complex material. Self-contained, timely, and user-friendly, Introduction to X-ray Powder Diffractometry is an enormously useful text and professional reference for analytical chemists, physicists, geologists and materials scientists, and upper-level undergraduate and graduate students in materials science and analytical chemistry. X-ray powder diffraction—a technique that has matured significantly in recent years—is used to identify solid samples and determine their composition by analyzing the so-called "fingerprints" they generate when X-rayed. This unique volume fulfills two major roles: it is the first textbook devoted solely to X-ray powder diffractometry, and the first up-to-date treatment of the subject in 20 years. This timely, authoritative volume features:
Introduction to X-ray Powder Diffractometry, a collaboration between two internationally known and respected experts in the field, provides invaluable guidance to anyone using X-ray powder diffractometers and diffractometry in materials science, ceramics, the pharmaceutical industry, and elsewhere.
Deep connections are emerging in the physics of non-thermal
systems, such as granular media, and other "complex systems" such
as glass formers, spin glasses, colloids or gels. This book
discusses the unifying physical theories, developed in recent
years, for the description of these systems. The special focus of
the book is on recent important developments in the formulation of
a Statistical Mechanics approach to granular media and the
description of out-of-equilibrium dynamics, such as "jamming"
phenomena, ubiquitous in these "complex systems." The book collects
contributions from leading researchers in these fields, providing
both an introduction, at a graduate level, to these rapidly
developing subjects and featuring an up to date, self contained,
presentation of theoretical and experimental developments for
researchers in areas ranging from Chemistry, to Engineering and
Physical Sciences.
Interfacial Separation of Particles is concerned with the
processing and separation of fine solid particles in liquid
solutions using interfacial technology.
Powder metallurgy, commonly designated by its initial letters asPM or PM, may be defined as the production of useful artefacts from metal powder without passing through the molten state. This introductory text examines the processes by which these powders are produced, and explores their behaviour in the subsequent consolidation stages. An outline of the sequence of operations following the manufacture of the powder in various forms is then described in the text. There are also selected case studies, details of porous PM components and wrought PM products, and other specialities.
Powder metallurgy (PM) is a popular metal forming technology used
to produce dense and precision components. Different powder and
component forming routes can be used to create an end product with
specific properties for a particular application or industry.
Advances in powder metallurgy explores a range of materials and
techniques used for powder metallurgy and the use of this
technology across a variety of application areas.
Manufacture of components from powders frequently requires a compaction step. Modelling of Powder Die Compaction presents a number of case studies that have been developed to test compaction models. It will be bought by researchers involved in developing models of powder compaction as well as by those working in industry, either using powder compaction to make products or using products made by powder compaction.
The growth of interest in newly developed porous materials has prompted the writing of this book for those who have the need to make meaningful measurements without the benefit of years of experience. One might consider this new book as the 4th edition of "Powder Surface Area and Porosity" (Lowell & Shields), but for this new edition we set out to incorporate recent developments in the understanding of fluids in many types of porous materials, not just powders. Based on this, we felt that it would be prudent to change the title to "Characterization of Porous Solids and Powders: Surface Area, Porosity and Density." This book gives a unique overview of principles associated with the characterization of solids with regard to their surface area, pore size, pore volume and density. It covers methods based on gas adsorption (both physi and chemisorption), mercury porosimetry and pycnometry. Not only are the theoretical and experimental basics of these techniques presented in detail but also, in light of the tremendous progress made in recent years in materials science and nanotechnology, the most recent developments are described. In particular, the application of classical theories and methods for pore size analysis are contrasted with the most advanced microscopic theories based on statistical mechanics (e.g. Density Functional Theory and Molecular Simulation). The characterization of heterogeneous catalysts is more prominent than in earlier editions; the sections on mercury porosimetry and particularly chemisorption have been updated and greatly expanded."
Bringing together the leading European expertise in behaviour and design of silos, this important new book is an essential reference source for all concerned with current problems and developments in silo technology. Silos are used in an enormous range of industries and the handling characteristics of many industrial materials require different approaches for successful, economical installations. For the first time, the many approaches taken by specialists in different fields are brought together in a unified way so that common problems can be addressed. This book is the result of a four-year European project - Concerted Action - Silos - funded under the Brite Euram programme which has involved over 100 expert engineers and researchers from all over Europe, in seven working groups.
Granular materials play an important role in many industries. Continuous ingenuity and advancement in these industries necessitates the ability to predict the fundamental behaviour of granular materials under different working environments. With contributions from international experts in the field Granular Materials; Fundamentals and Applications details recent advances made in theoretical computational and experimental approaches in understanding the behaviour of granular materials including industrial applications. Topics covered include: * key features of granular plasticity * high temperature particle interactions * influence of polymers on particulate dispersion stability: scanning probe microscopy investigations * in-process measurement of particulate systems Presented by world renowned researchers this book will be welcomed by scientists and engineers working across a wide spectrum of engineering disciplines.
A prestigious form of research grant in Germany is the Sonderforschungsbereich, which provides continuous funding over a period of up to 15 years, but only as long as the work is yielding worthwhile results. We acknowledge financial support of our work at Erlangen by the Deutsche Forschungsgemeinschaft (DFG), Sonder- forschungsbereich 222. Thanks to this support, the experimental results from six Dr. -Ing. dissertations have provided the basis for our book: 8 * Schweinzer, J. (1987) Heat transfer in bubbling fluidized beds at Ar;a. 10 * Seiter, M. (1990) Particle motion and solids concentration in circulating fluidized beds * Mattmann, W. (1991) Heat transfer in pressurized circulating fluidized beds * Burschka, A. (1993) Pulsed light method * Dietz, S. (1994) Heat transfer in bubbling fluidized beds * Gruber, U. (1995) Heat transfer in lean phase systems This book is the result of the enthusiastic and trustful cooperation of its authors. Nevertheless, we are separate individuals. Chapters 1 to 12 and 19 are by O. Molerus; Chapters 13 to 18 are by K. -E. Wirth. This book came into existence after many rewrites, patiently endured by Mrs Winter, who typed all versions of the manuscript, and by Mrs Scheffler-Kohler, who drew all the figures. Bob Farmer and David Penfold helped us bridge the language gap to produce a readable book. Weare grateful to Professor Brian Scarlett of Delft University, who on behalf of Chapman & Hall allowed us to write this book.
First published in 1999. Family homelessness is one of the most profound and disturbing social problems of the 1990's and will be one of the most important issues facing the United States in the twenty-first century. The main purpose of this study was to develop a transitional program framework that can assist homeless women with children to become self-sufficient. In order to create this framework; this study identified current program areas and components in transitional programs for homeless women with children, including education and employment training components; and determined which program areas and components of current programs have a relationship to programs with successful outcomes.
Particle characterization is an important component in product research and development, manufacture, and quality control of particulate materials and an important tool in the frontier of sciences, such as in biotechnology and nanotechnology. This book systematically describes one major branch of modern particle characterization technology - the light scattering methods. This is the first monograph in particle science and technology covering the principles, instrumentation, data interpretation, applications, and latest experimental development in laser diffraction, optical particle counting, photon correlation spectroscopy, and electrophoretic light scattering. In addition, a summary of all major particle sizing and other characterization methods, basic statistics and sample preparation techniques used in particle characterization, as well as almost 500 latest references are provided. The book is a must for industrial users of light scattering techniques characterizing a variety of particulate systems and for undergraduate or graduate students who want to learn how to use light scattering to study particular materials, in chemical engineering, material sciences, physical chemistry and other related fields.
The fundamentals of wet classification are described and a scientific basis for solving classification is presented. For the practical engineer, there is an overview of the technical solutions available.
The Fourth Edition of Powder Technology Handbook continues to serve as the comprehensive guide to powder technology and the fundamental engineering processes of particulate technology, while incorporating significant advances in the field in the decade since publication of the previous edition. The handbook offers a well-rounded perspective on powder technologies in gas and liquid phases that extends from particles and powders to powder beds and from basic problems to actual applications. This new edition features fully updated and new chapters written by a team of internationally distinguished contributors. All content has been updated and new sections added on. Powder Technology Handbook provides methodologies of powder and particle handling technology essential to scientific researchers and practical industrial engineers. It contains contemporary and comprehensive information on powder and particle handling technology that is extremely useful not only to newcomers but also to experienced engineers and researchers in the field of powder and particle science and technology.
A state-of-the-art reference, Metal Nanoparticles offers the latest
research on the synthesis, characterization, and applications of
nanoparticles. Following an introduction of structural, optical,
electronic, and electrochemical properties of nanoparticles, the
book elaborates on nanoclusters, hyper-Raleigh scattering,
nanoarrays, and several applications including single electron
devices, chemical sensors, biomolecule sensors, and DNA detection.
The text emphasizes how size, shape, and surface chemistry affect
particle performance throughout.
This handbook presents comprehensive coverage of the technology for
conveying and handling particulate solids. Each chapter covers a
different topic and contains both fundamentals and applications.
Usually, each chapter, or a topic within a chapter, starts with one
of the review papers. Chapter 1 covers the characterization of the
particulate materials. Chapter 2 covers the behaviour of
particulate materials during storage, and presents recent
developments in storage and feeders design and performance. Chapter
3 presents fundamental studies of particulate flow, while Chapters
4 and 5 present transport solutions, and the pitfalls of pneumatic,
slurry, and capsule conveying. Chapters 6, 7 and 8 cover both the
fundamentals and development of processes for particulate solids,
starting from fluidisation and drying, segregation and mixing, and
size-reduction and enlargement. Chapter 9 presents environmental
aspects and the classification of the particulate materials after
they have been handled by one of the above-mentioned processes.
Finally, Chapter 10 covers applications and developments of
measurement techniques that are the heart of the analysis of any
conveying or handling system.
The topics discussed in this text range from quasi-static problems to dynamic problems, and are divided into 15 groups, such as: cohesion/cracking; wave propagation; and quasi-static behaviour. Each group contains theoretical, experimental and computational approaches by researchers.
This is the first comprehensive book on fine particle synthesis that ranges from fundamental principles to the most advanced concepts, highlighting monodispersed particles from nanometers to micrometers. Describes mechanisms of formation and specific characteristics of each family of compounds while identifying problems and proposing solutions Offering a systematically organized review of the subject and including recent remarkable developments, Fine Particles contains subsections that analyze growth processes, characterize products, and delineate physical and chemical results based on causality arranges organic and inorganic materials according to their chemical composition covers forced hydrolysis and hydrolysis of metal and silicon alkoxides in homogeneous solutions details controlled double jet and Ostwald ripening processes examines emulsion and dispersion polymerization discusses surface modification of polymer and inorganic particles considers the formation of magnetic particles, fine composites, and nanocrystalline luminous materials and more Replete with 1700 references and over 600 photographs, drawings, tables, and equations, Fine Particles is useful for physical, surface, colloid, inorganic, organic, polymer, medicinal, and analytical chemists; chemical engineers; ceramicists; materials scientists; metallurgists; pharmacists; biochemists; biophysicists; biotechnologists; biomaterials specialists; and graduate students in these disciplines. |
![]() ![]() You may like...
Thermal Energy Storage - Basics, Design…
G. Beckmann, P.V. Gilli
Hardcover
R3,012
Discovery Miles 30 120
Mokgomana - The Life Of John Kgoana…
Peter Delius, Daniel Sher
Paperback
|