![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Powder technology
The NATO Advanced Study Institute on "Functional Gradient Materials and Surface Layers Prepared by Fine Particles Technology" was held in Kiev (Ukraine) on June 18- 28, 2000 where more than 90 participants, ranging from Ph.D. students to experienced senior scientists, met and exchanged ideas. This meeting was aimed at stimulating the research work across traditional disciplinary lines by bringing together scientists from diverse research areas related to functional gradient materials and surface layers. It also intended to give opportunities for initiating collaborative works between scientists from NATO and Partner countries and to trigger fruitful and exciting discussions between experienced and young researchers. In this respect, this NATO-ASI has been quite successful. The term of functional gradient materials which originates from Japan in the 1980's describes a class of engineering materials with spatially inhomogeneous microstructures and properties (MRS Bulletin, 1995,20, N Degreesl). These materials can be successfully utilized in various applications like electronic devices, optical films, anti wear and anti-corrosion coatings, thermal barrier coatings, biomaterials, to name only a few. Although these functional gradient materials are not fundamentally new, the use of nanoparticles in their fabrication and in surface layers as well has greatly improved their performances to meet challenging requirements for industrial applications.
This work describes the different operational regimes and the dominant mechanisms of flows in disperse systems.
Modern ceramic materials differ from the traditional materials which were only based on natural substances. It is now possible to prepare ceramics using a wide range of properties and as an area this field has evolved as a very broad scientific and technical field in its own right. In practice one encounters ceramics in practically all branches of materials science and the characteristics are so wide ranging that the common basis of these substances is not always immediately apparent. All ceramic materials are prepared by ceramic technology, and powder substances are used as the initial raw materials. Their physical properties are an expression not only of their composition, but primarily of their structure. Thus in order to fully understand the properties of ceramics, a knowledge of their structure is essential. This book is intended as a source of such knowledge. All the chapters are written by authors with vast experience in the various fields of ceramics who provide a detailed description of the interrelationships between the structure and behaviour of ceramic materials.
Since the publication of the first edition of Canada, and Australia have increased teach Handbook of Powder Science and Technology, ing, research, and training activities in areas the field of powder science and technology has related to particle science and technology. gained broader recognition and its various ar In addition, it is worth mentioning the many eas of interest have become more defined and books and monographs that have been pub focused. Research and application activities lished on specific areas of particle, powder, related to particle technology have increased and particle fluid by professional publishers, globally in academia, industry, and research technical societies and university presses. Also, institutions. During the last decade, many to date, there are many career development groups, with various scientific, technical, and courses given by specialists and universities on engineering backgrounds have been founded various facets of powder science and technol to study, apply, and promote interest in areas ogy."
These proceedings are the fifth in the series Traffic and Granular Flow, and we hope they will be as useful a reference as their predecessors. Both the realistic modelling of granular media and traffic flow present important challenges at the borderline between physics and engineering, and enormous progress has been made since 1995, when this series started. Still the research on these topics is thriving, so that this book again contains many new results. Some highlights addressed at this conference were the influence of long range electric and magnetic forces and ambient fluids on granular media, new precise traffic measurements, and experiments on the complex decision making of drivers. No doubt the "hot topics" addressed in granular matter research have diverged from those in traffic since the days when the obvious analogies between traffic jams on highways and dissipative clustering in granular flow intrigued both c- munities alike. However, now just this diversity became a stimulating feature of the conference. Many of us feel that our joint interest in complex systems, where many simple agents, be it vehicles or particles, give rise to surprising and fascin- ing phenomena, is ample justification for bringing these communities together: Traffic and Granular Flow has fostered cooperation and friendship across the scientific disciplines.
When bombarded with X-rays, solid materials produce distinct scattering patterns similar to fingerprints. X-ray powder diffraction is a technique used to fingerprint solid samples, which are then identified and cataloged for future use—much the way the FBI keeps fingerprints on file. The current database of some 70,000 material prints has been put to a broad range of uses, from the analysis of moon rocks to testing drugs for purity. Introduction to X-ray Powder Diffractometry fully updates the achievements in the field over the past fifteen years and provides a much-needed explanation of the state-of-the-art techniques involved in characterizing materials. It covers the latest instruments and methods, with an emphasis on the fundamentals of the diffractometer, its components, alignment, calibration, and automation. The first three chapters outline diffraction theory in clear language, accessible to both students and professionals in chemistry, physics, geology, and materials science. The book's middle chapters describe the instrumentation and procedures used in X-ray diffraction, including X-ray sources, X-ray detection, and production of monochromatic radiation. The chapter devoted to instrument design and calibration is followed by an examination of specimen preparation methods, data collection, and reduction. The final two chapters provide in-depth discussions of qualitative and quantitative analysis. While the material is presented in an orderly progression, beginning with basic concepts and moving on to more complex material, each chapter stands on its own and can be studied independently or used as a professional reference. More than 230 illustrations and tables demonstrate techniques and clarify complex material. Self-contained, timely, and user-friendly, Introduction to X-ray Powder Diffractometry is an enormously useful text and professional reference for analytical chemists, physicists, geologists and materials scientists, and upper-level undergraduate and graduate students in materials science and analytical chemistry. X-ray powder diffraction—a technique that has matured significantly in recent years—is used to identify solid samples and determine their composition by analyzing the so-called "fingerprints" they generate when X-rayed. This unique volume fulfills two major roles: it is the first textbook devoted solely to X-ray powder diffractometry, and the first up-to-date treatment of the subject in 20 years. This timely, authoritative volume features:
Introduction to X-ray Powder Diffractometry, a collaboration between two internationally known and respected experts in the field, provides invaluable guidance to anyone using X-ray powder diffractometers and diffractometry in materials science, ceramics, the pharmaceutical industry, and elsewhere.
Deep connections are emerging in the physics of non-thermal
systems, such as granular media, and other "complex systems" such
as glass formers, spin glasses, colloids or gels. This book
discusses the unifying physical theories, developed in recent
years, for the description of these systems. The special focus of
the book is on recent important developments in the formulation of
a Statistical Mechanics approach to granular media and the
description of out-of-equilibrium dynamics, such as "jamming"
phenomena, ubiquitous in these "complex systems." The book collects
contributions from leading researchers in these fields, providing
both an introduction, at a graduate level, to these rapidly
developing subjects and featuring an up to date, self contained,
presentation of theoretical and experimental developments for
researchers in areas ranging from Chemistry, to Engineering and
Physical Sciences.
Interfacial Separation of Particles is concerned with the
processing and separation of fine solid particles in liquid
solutions using interfacial technology.
Powder metallurgy, commonly designated by its initial letters asPM or PM, may be defined as the production of useful artefacts from metal powder without passing through the molten state. This introductory text examines the processes by which these powders are produced, and explores their behaviour in the subsequent consolidation stages. An outline of the sequence of operations following the manufacture of the powder in various forms is then described in the text. There are also selected case studies, details of porous PM components and wrought PM products, and other specialities.
Manufacture of components from powders frequently requires a compaction step. Modelling of Powder Die Compaction presents a number of case studies that have been developed to test compaction models. It will be bought by researchers involved in developing models of powder compaction as well as by those working in industry, either using powder compaction to make products or using products made by powder compaction.
Low shear polymer powder processing provides unique solutions to many processing problems and offers a set of production techniques, frequently un-paralleled by other production methods. In recent years there has been increased interest in this field but no comprehensive review of the subject has been available until now. In this book, a team of experts have taken the novel approach of treating several processing techniques, such as compacted powder sintering, rotational moulding, powder coating, ram extrusion, and compression moulding, as diverse implementations of a single technology. The first chapters deal with the scientific and engineering fundamentals shared by various polymer powder processing techniques, and are followed by a detailed examination of each technique and some special effects. Polymer Powder Technology will prove invaluable to technologists, plastics and materials engineers, researchers and students working with various aspects of particulate polymer processing.
The growth of interest in newly developed porous materials has prompted the writing of this book for those who have the need to make meaningful measurements without the benefit of years of experience. One might consider this new book as the 4th edition of "Powder Surface Area and Porosity" (Lowell & Shields), but for this new edition we set out to incorporate recent developments in the understanding of fluids in many types of porous materials, not just powders. Based on this, we felt that it would be prudent to change the title to "Characterization of Porous Solids and Powders: Surface Area, Porosity and Density." This book gives a unique overview of principles associated with the characterization of solids with regard to their surface area, pore size, pore volume and density. It covers methods based on gas adsorption (both physi and chemisorption), mercury porosimetry and pycnometry. Not only are the theoretical and experimental basics of these techniques presented in detail but also, in light of the tremendous progress made in recent years in materials science and nanotechnology, the most recent developments are described. In particular, the application of classical theories and methods for pore size analysis are contrasted with the most advanced microscopic theories based on statistical mechanics (e.g. Density Functional Theory and Molecular Simulation). The characterization of heterogeneous catalysts is more prominent than in earlier editions; the sections on mercury porosimetry and particularly chemisorption have been updated and greatly expanded."
Bringing together the leading European expertise in behaviour and design of silos, this important new book is an essential reference source for all concerned with current problems and developments in silo technology. Silos are used in an enormous range of industries and the handling characteristics of many industrial materials require different approaches for successful, economical installations. For the first time, the many approaches taken by specialists in different fields are brought together in a unified way so that common problems can be addressed. This book is the result of a four-year European project - Concerted Action - Silos - funded under the Brite Euram programme which has involved over 100 expert engineers and researchers from all over Europe, in seven working groups.
Particle technology is a term used to refer to the science and technology related to the handling and processing of particles and powders. The production of particulate materials, with controlled properties tailored to subsequent processing and applications, is of major interest to a wide range of industries, including chemical and process, food, pharmaceuticals, minerals and metals companies and the handling of particles in gas and liquid solutions is a key technological step in chemical engineering. This textbook provides an excellent introduction to particle technology with worked examples and exercises. Based on feedback from students and practitioners worldwide, it has been newly edited and contains new chapters on slurry transport, colloids and fine particles, size enlargement and the health effects of fine powders. Topics covered include: Characterization (Size Analysis)Processing (Granulation, Fluidization)Particle Formation (Granulation, Size Reduction)Storage and Transport (Hopper Design, Pneumatic Conveying, Standpipes, Slurry Flow)Separation (Filtration, Settling, Cyclones)Safety (Fire and Explosion Hazards, Health Hazards)Engineering the Properties of Particulate Systems (Colloids, Respirable Drugs, Slurry Rheology) This book is essential reading for undergraduate students of chemical engineering on particle technology courses. It is also valuable supplementary reading for students in other branches of engineering, applied chemistry, physics, pharmaceutics, mineral processing and metallurgy. Practitioners in industries in which powders are handled and processed may find it a useful starting point for gaining an understanding of the behavior of particles and powders. Review of the First Edition taken from "High Temperatures - High pressures" 1999 31 243 - 251 ..""This is a modern textbook that presents clear-cut knowledge.
It can be successfully used both for teaching particle technology
at universities and for individual study of engineering problems in
powder processing.""
Spanning a diverse range of materials from metal alloys through to
polymers, this book brings the reader up to date with the latest
developments in the formulation, characterization and application
of powdered materials. Contains a general mathematical background
and a step by step guide through the equations necessary for
thorough comprehension and quantitative appraisal of different
materials and heterogeneous structures The book is intended for
final year undergraduate and post graduate students of materials
science and engineering and those researchers and industrialists
working with powder processing techniques. Topics covered include:
Granular materials play an important role in many industries. Continuous ingenuity and advancement in these industries necessitates the ability to predict the fundamental behaviour of granular materials under different working environments. With contributions from international experts in the field Granular Materials; Fundamentals and Applications details recent advances made in theoretical computational and experimental approaches in understanding the behaviour of granular materials including industrial applications. Topics covered include: * key features of granular plasticity * high temperature particle interactions * influence of polymers on particulate dispersion stability: scanning probe microscopy investigations * in-process measurement of particulate systems Presented by world renowned researchers this book will be welcomed by scientists and engineers working across a wide spectrum of engineering disciplines.
A prestigious form of research grant in Germany is the Sonderforschungsbereich, which provides continuous funding over a period of up to 15 years, but only as long as the work is yielding worthwhile results. We acknowledge financial support of our work at Erlangen by the Deutsche Forschungsgemeinschaft (DFG), Sonder- forschungsbereich 222. Thanks to this support, the experimental results from six Dr. -Ing. dissertations have provided the basis for our book: 8 * Schweinzer, J. (1987) Heat transfer in bubbling fluidized beds at Ar;a. 10 * Seiter, M. (1990) Particle motion and solids concentration in circulating fluidized beds * Mattmann, W. (1991) Heat transfer in pressurized circulating fluidized beds * Burschka, A. (1993) Pulsed light method * Dietz, S. (1994) Heat transfer in bubbling fluidized beds * Gruber, U. (1995) Heat transfer in lean phase systems This book is the result of the enthusiastic and trustful cooperation of its authors. Nevertheless, we are separate individuals. Chapters 1 to 12 and 19 are by O. Molerus; Chapters 13 to 18 are by K. -E. Wirth. This book came into existence after many rewrites, patiently endured by Mrs Winter, who typed all versions of the manuscript, and by Mrs Scheffler-Kohler, who drew all the figures. Bob Farmer and David Penfold helped us bridge the language gap to produce a readable book. Weare grateful to Professor Brian Scarlett of Delft University, who on behalf of Chapman & Hall allowed us to write this book.
First published in 1999. Family homelessness is one of the most profound and disturbing social problems of the 1990's and will be one of the most important issues facing the United States in the twenty-first century. The main purpose of this study was to develop a transitional program framework that can assist homeless women with children to become self-sufficient. In order to create this framework; this study identified current program areas and components in transitional programs for homeless women with children, including education and employment training components; and determined which program areas and components of current programs have a relationship to programs with successful outcomes.
Particle characterization is an important component in product research and development, manufacture, and quality control of particulate materials and an important tool in the frontier of sciences, such as in biotechnology and nanotechnology. This book systematically describes one major branch of modern particle characterization technology - the light scattering methods. This is the first monograph in particle science and technology covering the principles, instrumentation, data interpretation, applications, and latest experimental development in laser diffraction, optical particle counting, photon correlation spectroscopy, and electrophoretic light scattering. In addition, a summary of all major particle sizing and other characterization methods, basic statistics and sample preparation techniques used in particle characterization, as well as almost 500 latest references are provided. The book is a must for industrial users of light scattering techniques characterizing a variety of particulate systems and for undergraduate or graduate students who want to learn how to use light scattering to study particular materials, in chemical engineering, material sciences, physical chemistry and other related fields.
Although sintering is an essential process in the manufacture of ceramics and certain metals, as well as several other industrial operations, until now, no single book has treated both the background theory and the practical application of this complex and often delicate procedure. In Sintering Theory and Practice, leading researcher and materials engineer Randall M. German presents a comprehensive treatment of this subject that will be of great use to manufacturers and scientists alike. This practical guide to sintering considers the fact that while the bonding process improves strength and other engineering properties of the compacted material, inappropriate methods of control may lead to cracking, distortion, and other defects. It provides a working knowledge of sintering, and shows how to avoid problems while accounting for variables such as particle size, maximum temperature, time at that temperature, and other problems that may cause changes in processing. The book describes the fundamental atomic events that govern the transformation from particles to solid, covers all forms of the sintering process, and provides a summary of many actual production cycles. Building from the ground up, it begins with definitions and progresses to measurement techniques, easing the transition, especially for students, into advanced topics such as single-phase solid-state sintering, microstructure changes, the complications of mixed particles, and pressure-assisted sintering. German draws on some six thousand references to provide a coherent and lucid treatment of the subject, making scientific principles and practical applications accessible to both students and professionals. In the process, he also points out and avoids the pitfalls found in various competing theories, concepts, and mathematical disputes within the field. A unique opportunity to discover what sintering is all about—both in theory and in practice What is sintering? We see the end product of this thermal process all around us—in manufactured objects from metals, ceramics, polymers, and many compounds. From a vast professional literature, Sintering Theory and Practice emerges as the only comprehensive, systematic, and self-contained volume on the subject. Covering all aspects of sintering as a processing topic, including materials, processes, theories, and the overall state of the art, the book
For practitioners and researchers in ceramics, powder metallurgy, and other areas, and for students and faculty in materials science and engineering, this book provides the know-how and understanding crucial to many industrial operations, offers many ideas for further research, and suggests future applications of this important technology. This book offers an unprecedented opportunity to explore sintering in both practical and theoretical terms, whether at the lab or in real-world applications, and to acquire a broad, yet thorough, understanding of this important technology.
The fundamentals of wet classification are described and a scientific basis for solving classification is presented. For the practical engineer, there is an overview of the technical solutions available.
The Fourth Edition of Powder Technology Handbook continues to serve as the comprehensive guide to powder technology and the fundamental engineering processes of particulate technology, while incorporating significant advances in the field in the decade since publication of the previous edition. The handbook offers a well-rounded perspective on powder technologies in gas and liquid phases that extends from particles and powders to powder beds and from basic problems to actual applications. This new edition features fully updated and new chapters written by a team of internationally distinguished contributors. All content has been updated and new sections added on. Powder Technology Handbook provides methodologies of powder and particle handling technology essential to scientific researchers and practical industrial engineers. It contains contemporary and comprehensive information on powder and particle handling technology that is extremely useful not only to newcomers but also to experienced engineers and researchers in the field of powder and particle science and technology.
A state-of-the-art reference, Metal Nanoparticles offers the latest
research on the synthesis, characterization, and applications of
nanoparticles. Following an introduction of structural, optical,
electronic, and electrochemical properties of nanoparticles, the
book elaborates on nanoclusters, hyper-Raleigh scattering,
nanoarrays, and several applications including single electron
devices, chemical sensors, biomolecule sensors, and DNA detection.
The text emphasizes how size, shape, and surface chemistry affect
particle performance throughout.
The topics discussed in this text range from quasi-static problems to dynamic problems, and are divided into 15 groups, such as: cohesion/cracking; wave propagation; and quasi-static behaviour. Each group contains theoretical, experimental and computational approaches by researchers.
This is the first comprehensive book on fine particle synthesis that ranges from fundamental principles to the most advanced concepts, highlighting monodispersed particles from nanometers to micrometers. Describes mechanisms of formation and specific characteristics of each family of compounds while identifying problems and proposing solutions Offering a systematically organized review of the subject and including recent remarkable developments, Fine Particles contains subsections that analyze growth processes, characterize products, and delineate physical and chemical results based on causality arranges organic and inorganic materials according to their chemical composition covers forced hydrolysis and hydrolysis of metal and silicon alkoxides in homogeneous solutions details controlled double jet and Ostwald ripening processes examines emulsion and dispersion polymerization discusses surface modification of polymer and inorganic particles considers the formation of magnetic particles, fine composites, and nanocrystalline luminous materials and more Replete with 1700 references and over 600 photographs, drawings, tables, and equations, Fine Particles is useful for physical, surface, colloid, inorganic, organic, polymer, medicinal, and analytical chemists; chemical engineers; ceramicists; materials scientists; metallurgists; pharmacists; biochemists; biophysicists; biotechnologists; biomaterials specialists; and graduate students in these disciplines. |
![]() ![]() You may like...
Emerging Fields in Sol-Gel Science and…
Tessy Maria Lopez, David Avnir, …
Hardcover
R4,668
Discovery Miles 46 680
Fluidization of Fine Powders - Cohesive…
Jose Manuel Valverde Millan
Hardcover
R3,533
Discovery Miles 35 330
Processing of Particulate Solids
J. P. Seville, Ugammaur Tuzun, …
Hardcover
R6,102
Discovery Miles 61 020
Low Dimensional Structures Prepared by…
K. Eberl, Pierre M Petroff, …
Hardcover
R6,112
Discovery Miles 61 120
Bulk Solids Handling - An Introduction…
C.R. Woodcock, J.S. Mason
Hardcover
R8,992
Discovery Miles 89 920
|