![]() |
![]() |
Your cart is empty |
||
Books > Earth & environment > Geography > Cartography, geodesy & geographic information systems (GIS) > Remote sensing
Mapping Geomorphological Environments is a highly descriptive textbook providing an excellent introduction to the latest methodologies for mapping geomorphological formations in a variety of different environments. Its holistic approach seeks to provide a meaningful linkage between state of the art techniques for geomorphological mapping, including the latest innovations in geospatial applications, and advances in the understanding of the formation of geomorphological phenomena in a variety of settings and environments. The book includes: - An introduction to the processes which form geomorphological formations and how to map them. - Case studies from a variety of environments with many examples of geomorphological maps. - In-depth descriptions of the latest tools and methodologies such as field sampling, GPS usage, 3-4D mapping, GIS analysis, digital image analysis, etc. - A list of the geomorphological characteristics per environment (e.g. coastal, fluvial, etc.) in the format of a geomorphological encyclopaedia, with pictures, maps and symbols. It covers the entire workflow ranging from data collection, analysis, interpretation, and mapping. Acknowledgements All authors would like to acknowledge the contribution of Dr. John W.M. Peterson, School of Computing Sciences, University of East Anglia, Norwich, UK, for corrections and improvement to the English text.. Universita Telematica Guglielmo Marconi (UTGM) and ENEA acknowledge the collaboration of CUTGANA (Centro Universitario per la Tutela e la Gestione degli Ambienti Naturali e degli Agroecosistemi), Universita di Catania, for the paper on "The Cyclops Islands". IRMCo acknowledges the use of the Integrated Land and Water Information System (ILWIS), developed by ITC, the Netherlands, for the management and assessment of geographic information in a GIS environment. ILWIS functionality was employed for the paper on "The natural heritage of the Island of Gozo" and the paper on "The geomorphological cave features of Ghar il-Friefet". IPB (Polytechnic Institute of Braganca) wishes to acknowledges all those colleagues, most of them also members of CIMO (Centre for Mountain Research), that contributed to the recently issued Management Plan of Montesinho Natural Park (PNM). Their hidden contribution to the articles concerning PNM is much acknowledged. A word in recognition of his endless and contagious enthusiasm towards Montesinho and to the Mountain domain, spread among us all in the IPB, is due to Professor Dionisio Goncalves, the first Director, Coordinator and President of PNM, CIMO and IPB, respectively. The authors of the photos inserted in the articles concerning Montesinho are also much acknowledged for their contribution.
This book will be based on the material of the lecture noties in several International Schools for the Determination and Use of the Geoid, organized by the International Geoid Serivice of the International Association of Geodesy. It consolidates, unifies, and streamlines this material in a unique way not covereed by the few other books that exist on this subjext. More specifically, the book presents (for the first time in a single volume) the theory and methodology of the most common technique used for precise determination of the geoid, including the computation of the marine geoid from satellite altimetry data. These are illustrated by specific examples and actual computations of local geoids. In addition, the book provides the fundamentals of estimating orthometric heights without spirit levelling, by properly combining a geoid with heights from GPS. Besides the geodectic and geophysical uses, this last application has made geoid computation methods very popular in recent years because the entire GPS and GIS user communities are interested in estimating geoid undulations in order to convert GPS heights to physically meaningful orthometric heights (elevations above mean sea level). The overall purpose of the book is, therefore, to provide the user community (academics, graduate students, geophysicists, engineers, oceanographers, GIS and GPS users, researchers) with a self-contained textbook, which will supply them with the complete roadmap of estimating geoid undulations, from the theoretical definitions and formulas to the available numerical methods and their implementation and the test in practice.
As climate change takes hold, there is an ever-growing need to develop and apply strategies that optimize the use of natural resources, both on land and in water. This book covers a huge range of strategies that can be applied to various sectors, from forests to flood control. Its aim, as with resource management itself, is to combine economics, policy and science to help rehabilitate and preserve our natural resources. Beginning with papers on carbon sequestration, including the practice of artificial desertification, the topics move on to cover the use of distributed modeling and neural networks in estimating water availability and distribution. Further chapters look at uncertainty analysis applied to the spatial variation of hydrologic resources, and finally the book covers attempts at estimating meteorological parameters in the context of hydrological variables such as evapo-transpiration from stream flow. Within the next decade, the effects of climate change will be severe, and felt by ordinary human beings. This book proposes a raft of measures that can mitigate, if not reverse, the impact of global warming on the resources we have all come to depend on.
Archaeology has been historically reluctant to embrace the subject of agent-based simulation, since it was seen as being used to "re-enact" and "visualize" possible scenarios for a wider (generally non-scientific) audience, based on scarce and fuzzy data. Furthermore, modeling "in exact terms" and programming as a means for producing agent-based simulations were simply beyond the field of the social sciences. This situation has changed quite drastically with the advent of the internet age: Data, it seems, is now ubiquitous. Researchers have switched from simply collecting data to filtering, selecting and deriving insights in a cybernetic manner. Agent-based simulation is one of the tools used to glean information from highly complex excavation sites according to formalized models, capturing essential properties in a highly abstract and yet spatial manner. As such, the goal of this book is to present an overview of techniques used and work conducted in that field, drawing on the experience of practitioners.
Unmanned Aircraft Systems (UASs) are a rapidly evolving technology with an expanding array of diverse applications. In response to the continuing evolution of this technology, this book discusses UAVs and similar systems, platforms, and sensors, as well as exploring some of their environmental applications. It explains how they can be used for mapping, monitoring, and modelling a wide variety of different environmental aspects and, at the same time, addresses some of the current constraints placed on realising the potential use of the technology, such as flight duration and distance, safety, and the invasion of privacy. Unmanned Aerial Remote Sensing: UAS for Environmental Applications is an excellent resource for any practitioner utilising remote sensing and other geospatial technologies for environmental applications, such as conservation, research, and planning. Students and academics in information science, environment and natural resources, geosciences, and geography will likewise find this comprehensive book a useful and informative resource. Features Provides necessary theoretical foundations for pertinent subject matter areas Introduces the role and value of UAVs for geographical data acquisition and the ways to acquire and process the data Provides a synthesis of ongoing research and a focus on the use of technology for small-scale image and spatial data acquisition in an environmental context Written by experts of the technology who bring together UAS tools and resources for environmental specialists.
This book constitutes the refereed proceedings of the International Conference on Geographical Information Systems Theory, Applications and Management, held in Barcelona, Spain, in April 2015. The 10 revised full papers presented were carefully reviewed and selected from 45 submissions. The papers address new challenges in geo-spatial data sensing, observation, representation, processing, visualization, sharing and managing. They concern information and communications technology (ICT) as well as management of information and knowledge-based systems.
The book describes experience in application of coastal altimetry to different parts of the World Ocean. It presents the principal problems related to the altimetry derived products in coastal regions of the ocean and ways of their improvement. This publication is based on numerous satellite and observational data collected and analyzed by the authors of the various chapters in the framework of a set of international projects, performed in UK, France, Italy, Denmark, Russia, USA, Mexico and India. The book will contribute both to the ongoing International Altimeter Service effort and to the building of a sustained coastal observing system in the perspective of GMES (Global Monitoring for Environment and Security) and GEOSS (Global Earth Observation System of Systems) initiatives. This book is aimed at specialists concerned with research in the various fields of satellite altimetry, remote sensing, and coastal physical oceanography. The book will be also interesting for lecturers, students and post-graduate students.
This volume constitutes the refereed proceedings of the Third International Conference on Geo-Informatics in Resource Management and Sustainable Ecosystem, GRMSE 2015, held in Wuhan, China, in October 2015. The 101 papers presented were carefully reviewed and selected from 321 submissions. The papers are divided into topical sections on Smart City in Resource Management and Sustainable Ecosystem; Spatial Data Acquisition Through RS and GIS in Resource Management and Sustainable Ecosystem; Ecological and Environmental Data Processing and Management; Advanced Geospatial Model and Analysis for Understanding Ecological and Environmental Process; Applications of Geo-Informatics in Resource Management and Sustainable Ecosystem.
1. Provides the fundamentals of subpixel mapping technology and its applications. 2. Discusses in detail the advantages of using different subpixel mapping techniques based on remote sensing data. 3. Summarizes in a systematic way current subpixel location methods. 4. Highlights authors' achievements in subpixel mapping technology. 5. Includes case studies based on remote sensing data from USA, Italy, China, and Cambodia.
This book offers a unique collection of inter- and multidisciplinary studies on river systems. Rivers have been the prime source of sustenance since the advent of civilization and river systems often form the basis for agriculture, transport, water, and land for domestic, commercial, and industrial activities, fostering economic prosperity. A river basin is a basic geographical and climatological unit within which the vagaries of natural processes act and manifest themselves at different spatio-temporal scales. Even if compared side-by-side, no two river basins respond to natural processes in the same way and thus, it has long been recognized that each river basin is unique. Hence, any developmental activity or conservation effort has to be designed and implemented to match each unique river basin. With the burgeoning population and increasing dependency on natural resources, understanding and maintaining river systems has become increasingly important. This book provides a varied reference work on and unprecedented guidelines for conducting and implementing research on river basins, and for managing their ecological development.
GPR Remote Sensing in Archaeology provides a complete description of the processes needed to take raw GPR data all the way to the construction of subsurface images. The book provides an introduction to the "theory" of GPR by using a simulator that shows how radar profiles across simple model structures look and provides many examples so that the complexity of radar signatures can be understood. It continues with a review of the necessary radargram signal processes needed along with examples. The most comprehensive methodology to construct subsurface images from either coarsely spaced data using interpolation or from dense data from multi-channel equipment and 3D volume generation is presented, advanced imaging solutions such as overlay analysis are introduced, and numerous worldwide site case histories are shown. The authors present their studies in a way that most technical and non-technical users of the equipment will find essentials for implementing in their own subsurface investigations.
This introduction to the use of radar for remote sensing of natural surfaces provides the reader with a thorough grounding in practical applications, focusing particularly on terrestrial studies that may be extended to other planets. An historical overview of the subject is followed by an introduction to the nomenclature and methodology pertaining to radar data collection, image interpretation and surface roughness analysis. The author presents a summary (illustrated with examples from the natural environment) of theoretical explanations for the backscatter properties of continuous rough surfaces, collections of discrete objects, and layered terrain.
A variety of biophysical applications (e.g. leaf area index and gross primary productivity) have been derived from measurements of the Earth system obtained remotely by NASA's MODIS sensors and other satellite platforms. In Biophysical Applications of Satellite Remote Sensing, the authors describe major applications of satellite remote sensing for studying Earth's biophysical phenomena. The focus of the book lies on the broad palette of specific applications (metrics) of biophysical activity derived using satellite remote sensing. With in-depth discussions of satellite-derived biophysical metrics that focus specifically on theory, methodology, validation, major findings, and directions of future research, this book provides an excellent resource for remote sensing specialists, ecologists, geographers, biologists, climatologists, and environmental scientists.
This book focuses on the use of open source software for geospatial analysis. It demonstrates the effectiveness of the command line interface for handling both vector, raster and 3D geospatial data. Appropriate open-source tools for data processing are clearly explained and discusses how they can be used to solve everyday tasks. A series of fully worked case studies are presented including vector spatial analysis, remote sensing data analysis, landcover classification and LiDAR processing. A hands-on introduction to the application programming interface (API) of GDAL/OGR in Python/C++ is provided for readers who want to extend existing tools and/or develop their own software.
This volume is based on the reviewed and edited proceedings of the International Symposium on Spatial Data Handling 2012, held in Bonn. The 15th SDH brought together scholars and professionals from the international GIScience community to present the latest research achievements and to share experiences in Geospatial dynamics, geosimulation and exploratory visualization.
Major natural hazards have sparked growing public concern worldwide. This book provides new information on Typhoon Impact and Crisis Management using satellite remote sensing technology, linking the natural sciences and social sciences in typhoon studies. It examines remote sensing observations of typhoons (hurricanes), typhoon impacts on the environment, typhoon impacts on marine ecosystems, typhoon impacts and global changes, typhoon (hurricane) impacts on economics, and crisis management for typhoon (hurricane) disasters.
This book is focused on the nonlinear theoretical and mathematical problems associated with ultrafast intense laser pulse propagation in gases and in particular, in air. With the aim of understanding the physics of filamentation in gases, solids, the atmosphere, and even biological tissue, specialists in nonlinear optics and filamentation from both physics and mathematics attempt to rigorously derive and analyze relevant non-perturbative models. Modern laser technology allows the generation of ultrafast (few cycle) laser pulses, with intensities exceeding the internal electric field in atoms and molecules (E=5x109 V/cm or intensity I = 3.5 x 1016 Watts/cm2 ). The interaction of such pulses with atoms and molecules leads to new, highly nonlinear nonperturbative regimes, where new physical phenomena, such as High Harmonic Generation (HHG), occur, and from which the shortest (attosecond - the natural time scale of the electron) pulses have been created. One of the major experimental discoveries in this nonlinear nonperturbative regime, Laser Pulse Filamentation, was observed by Mourou and Braun in 1995, as the propagation of pulses over large distances with narrow and intense cones. This observation has led to intensive investigation in physics and applied mathematics of new effects such as self-transformation of these pulses into white light, intensity clamping, and multiple filamentation, as well as to potential applications to wave guide writing, atmospheric remote sensing, lightning guiding, and military long-range weapons. The increasing power of high performance computers and the mathematical modelling and simulation of photonic systems has enabled many new areas of research. With contributions by theorists and mathematicians, supplemented by active experimentalists who are experts in the field of nonlinear laser molecule interaction and propagation, Laser Filamentation sheds new light on scientific and industrial applications of modern lasers.
Quo Vadis: Evolution of Modern Navigation presents an intelligent and intelligible account of the essential principles underlying the design of satellite navigational systems-with introductory chapters placing them in context with the early development of navigational methods. The material is organized roughly as follows: the first third of the book deals with navigation in the natural world, the early history of navigation, navigating by the stars, precise mechanical chronometers for the determination of longitude at sea, and the development of precise quartz controlled clocks. Then, the reader is introduced to quantum ideas as a lead in to a discussion of microwave and optical interactions with atoms, atomic clocks, laser gyrocompasses, and time based navigation. The final third of the book deals with satellite-based systems, including orbit theory, early satellite navigation systems, and a detailed treatment of the Global Positioning System (GPS). Intended for non-specialists with some knowledge of physics or engineering at the college level, this book covers in an intuitive manner a broad range of topics relevant to the evolution of surface and space navigation, with minimum mathematical formalism.
This book explores the impact of augmenting novel architectural designs with hardware-based application accelerators. The text covers comprehensive aspects of the applications in Geographic Information Science, remote sensing and deploying Modern Accelerator Technologies (MAT) for geospatial simulations and spatiotemporal analytics. MAT in GIS applications, MAT in remotely sensed data processing and analysis, heterogeneous processors, many-core and highly multi-threaded processors and general purpose processors are also presented. This book includes case studies and closes with a chapter on future trends. Modern Accelerator Technologies for GIS is a reference book for practitioners and researchers working in geographical information systems and related fields. Advanced-level students in geography, computational science, computer science and engineering will also find this book useful.
This book provides a comprehensive and advanced overview of the basic theory of thermal remote sensing and its application in hydrology, agriculture, and forestry. Specifically, the book highlights the main theory, assumptions, advantages, drawbacks, and perspectives of these methods for the retrieval and validation of surface temperature/emissivity and evapotranspiration from thermal infrared remote sensing. It will be an especially valuable resource for students, researchers, experts, and decision-makers whose interest focuses on the retrieval and validation of surface temperature/emissivity, the estimation and validation of evapotranspiration at satellite pixel scale, and the application of thermal remote sensing. Both Prof. Huajun Tang and Prof. Zhao-Liang Li work at the Chinese Academy of Agricultural Sciences (CAAS), China.
Light Scattering Reviews (vol. 9) is aimed at the description of modern advances in radiative transfer and light scattering. The following topics will be considered: light scattering by atmospheric dust particles and also by inhomogeneous scatterers, the general - purpose discrete - ordinate algorithm DISORT for radiative transfer, the radiative transfer code RAY based on the adding-doubling solution of the radiative transfer equation, aerosol and cloud remote sensing, use of polarization in remote sensing, direct aerosol radiative forcing, principles of the Mueller matrix measurements, light reflectance from various land surfaces. This volume will be a valuable addition to already published volumes 1-8 of Light Scattering Reviews.
The aim of the book is to present and discuss new methods, issues and challenges involved in geoinformatics' contribution to making transportation more intelligent, efficient and human-friendly. It covers a wide range of topics related to transportation and geoinformatics. The themes are divided into four main sections: Transport modeling, Sensor data and services, Intelligent transport systems, and Transport planning and accessibility.
Global trends such as urbanization, demographic and climate change that are currently underway pose serious challenges to sustainable development and integrated resources management. The complex relations between demands, resource availability and quality and financial and physical constraints can be addressed by knowledge based policies and reform of professional practice. The nexus approach recognizes the urgent need for this knowledge and its interpretation in a policy- relevant setting that is guided by the understanding that there is a lack of blueprints for development based on integrated management of water, soil and waste resources in the Member States. Generation and application of knowledge is both a priority for individual but also institutional capacity development.
This book describes essential methods for evaluating groundwater vulnerability to contamination. It analyzes the chemical and dynamic properties of groundwater in detail and proposes the use of cartography to elucidate underground hydrodynamic behavior and scale classification. Supplemented by color illustrations, figures and tables, as well as a comprehensive bibliography for further research on specific issues, the book studies groundwater behavior in different types of plains, such as alluvial, deltaic, piedmont, intermountain and marine, and suggests a methodology for hydrogeological studies.
The rate at which geospatial data is being generated exceeds our computational capabilities to extract patterns for the understanding of a dynamically changing world. Geoinformatics and data mining focuses on the development and implementation of computational algorithms to solve these problems. This unique volume contains a collection of chapters on state-of-the-art data mining techniques applied to geoinformatic problems of high complexity and important societal value. Data Mining for Geoinformatics addresses current concerns and developments relating to spatio-temporal data mining issues in remotely-sensed data, problems in meteorological data such as tornado formation, estimation of radiation from the Fukushima nuclear power plant, simulations of traffic data using OpenStreetMap, real time traffic applications of data stream mining, visual analytics of traffic and weather data and the exploratory visualization of collective, mobile objects such as the flocking behavior of wild chickens. This book is designed for researchers and advanced-level students focused on computer science, earth science and geography as a reference or secondary text book. Practitioners working in the areas of data mining and geoscience will also find this book to be a valuable reference. |
![]() ![]() You may like...
Small-Format Aerial Photography and UAS…
James S. Aber, Irene Marzolff, …
Paperback
R2,780
Discovery Miles 27 800
Microwave Radiometry and Remote Sensing…
Pampaloni, Paloscia
Hardcover
Land Surface Remote Sensing in Urban and…
Nicolas Baghdadi, Mehrez Zribi
Hardcover
Case Studies in Geospatial Applications…
Pravat Kumar Shit, Gouri Sankar Bhunia, …
Paperback
R3,438
Discovery Miles 34 380
Extreme Hydroclimatic Events and…
Viviana Maggioni, Christian Massari
Paperback
R3,718
Discovery Miles 37 180
Taking the Temperature of the Earth…
Glynn Hulley, Darren Ghent
Paperback
R3,128
Discovery Miles 31 280
3D Recording and Interpretation for…
Wendy Van Duivenvoorde, Trevor Winton, …
Hardcover
R1,469
Discovery Miles 14 690
|