![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Earth & environment > Geography > Cartography, geodesy & geographic information systems (GIS) > Remote sensing
It was in September 1906 that the predecessor of the IAG, the 'Internationale Erdmessung', th organized the 15 General Assembly at the Hungarian Academy of Sciences in Budapest. It was 95 years later, in September 2001, that the IAG returned to this beautiful city to hold its Scientific Assembly, IAG 2001, in the historical premises of the Academy. The meeting took place from September 2-7, 2001 and continued the tradition of Scientific Assemblies, started in Tokyo (1982) and continued in Edinburgh (1989), Beijing (1993) and Rio de Janeiro (1997). Held every four years at the midpoint between General Assemblies of the IAG, they focus on giving an integrated view of geodesy to a broad spectrum of researchers and practitioners in geodesy and geophysics. The convenient location of the main building of the Hungarian Academy in downtown Budapest and the superb efforts of the Local Organizing Committee contributed in a major way to the excellent atmosphere of the meeting. As at previous meetings, the scientific part of the program was organized as a series of symposia which, as a whole, gave a broad overview of actual geodetic research activities. To emphasize an integrated view of geodesy, the symposia did not follow the pattern of the IAG Sections, but focussed on current research topics to which several IAG Sections could contribute. Each symposium had 5 sessions with presented papers and poster sessions on two consecutive days.
Under leadership of CT de Wit a large amount of modeling, building prototypes and also application, was carried out in the 1970s and 1980s. Comprehensive models were built, evaluated and carefully documented in the areas of crop growth production, plant breeding, soil water and nutrients, and in crop protection. Simulation techniques and biophysical theories developed in parallel. Simulation and experimentation always went hand in hand. Much of this work is documented in a long series of PhD theses under supervision of De Wit, in the series of Simulation Monographs (PUDOC), and in numerous other publications. This work has inspired many scientists across the global science community. The CT de Wit Graduate School of Production Ecology (PE) of the Wageningen University builds further on this platform and finds new subjects for research on and with models, and data. The PE platform provides also an excellent opportunity to develop contacts, cooperation and joint software with research groups in related fields and abroad. This book precipitates from such an exploration in new directions. We realize that modem information systems and statistics can offer a substantial contribution to the modelling framework. Good examples can be found here, and these provide a clear direction for the years to come.
Environmental information systems (EIS) are concerned with the management of data about the soil, the water, the air, and the species in the world around us. This first textbook on the topic gives a conceptual framework for EIS by structuring the data flow into 4 phases: data capture, storage, analysis, and metadata management. This flow corresponds to a complex aggregation process gradually transforming the incoming raw data into concise documents suitable for high-level decision support. All relevant concepts are covered, including statistical classification, data fusion, uncertainty management, knowledge based systems, GIS, spatial databases, multidimensional access methods, object-oriented databases, simulation models, and Internet-based information management. Several case studies present EIS in practice.
During the Conference on Air-Sea Interaction in January 1986, it was suggested to me by David Larner of Reidel Press that it may be timely for an updated compendium of air-sea interaction theory to be organized, developed, and published. Many new results were emerging at the time, i.e., results from the MARSEN, MASEX, MILDEX, and TOWARD field projects (among others) were in the process of being reported and/or published. Further, a series of new experiments such as FASINEX and HEXOS were soon to be conducted in which new strides in our knowledge of air-sea fluxes would be made. During the year following the discussions with David Larner, it became apparent that many of the advances in air-sea interaction theory during the 1970s and 1980s were associated with sponsor investments in satellite oceanography and, in particular, remote sensing research. Since ocean surface remote sensing, e.g., scatterometry and SAR, requires intimate knowledge of ocean surface dynamics, advances in remote sensing capabilities required coordinated research in air-sea fluxes, wave state, scattering theory, sensor design, and data exploitation using environmental models. Based on this interplay of disciplines, it was decided that this book be devoted to air sea interaction and remote sensing as multi-disciplinary activities.
Spatio-Temporal Databases explores recent trends in flexible querying and reasoning about time- and space-related information in databases. It shows how flexible querying enhances standard querying expressiveness in many different ways, with the aim of facilitating extraction of relevant data and information. Flexible spatial and temporal reasoning denotes qualitative reasoning about dynamic changes in the spatial domain, characterized by imprecision or uncertainty (or both). Many of the contributions focus on GIS, while some others are more general, or focus on related application fields, presenting theoretical viewpoints and techniques that are inspiring or can be adapted for GIS. The first part bundles the contributions on advances at the theoretical level, also discussing examples and opening further perspectives. The second part presents contributions on well-developed applications. The authors explain how to handle imprecision and uncertainty, demonstrating how advanced techniques can help to solve diverse problems related to GIS.
Gaussian scale-space is one of the best understood multi-resolution techniques available to the computer vision and image analysis community. It is the purpose of this book to guide the reader through some of its main aspects. During an intensive weekend in May 1996 a workshop on Gaussian scale-space theory was held in Copenhagen, which was attended by many of the leading experts in the field. The bulk of this book originates from this workshop. Presently there exist only two books on the subject. In contrast to Lindeberg's monograph (Lindeberg, 1994e) this book collects contributions from several scale space researchers, whereas it complements the book edited by ter Haar Romeny (Haar Romeny, 1994) on non-linear techniques by focusing on linear diffusion. This book is divided into four parts. The reader not so familiar with scale-space will find it instructive to first consider some potential applications described in Part 1. Parts II and III both address fundamental aspects of scale-space. Whereas scale is treated as an essentially arbitrary constant in the former, the latter em phasizes the deep structure, i.e. the structure that is revealed by varying scale. Finally, Part IV is devoted to non-linear extensions, notably non-linear diffusion techniques and morphological scale-spaces, and their relation to the linear case. The Danish National Science Research Council is gratefully acknowledged for providing financial support for the workshop under grant no. 9502164."
The emphasis now placed on the concept of sediment cells as boundaries for coastal defence groups, and the development of SMPs, should help CPAs realise the importance of natural processes at the coast when designing defence and protection schemes. However, this will only be the case where defence groups exist, and where CPAs take up the challenge of developing SMPs. Coastal landscapes have been produced by the natural forces of wind, waves and tides, and many are nationally or internationally important for their habitats and natural features. Past practices at the coast, such as the construction of harbours, jetties and traditional defence systems may have contributed to the deterioration of the coast. English Nature (1992) have argued that if practices and methods of coastal defence are allowed to continue, then coastlines would be faced with worsening consequences, including: The loss of mudflats and the birds which live on them Damage to geological Sites of Special Scientific Interest (SSSIs) and scenic heritage by erosion, due to the stabilisation of the coast elsewhere Cutting of sediment supplies to beaches resulting in the loss of coastal wildlife Cessation through isolation from coastal processes, of the natural operation of spits, with serious deterioration of rare plants, animals and geomorphological and scenic qualities (English Nature, 1992) A number of designations, provided by national and international legislation do exist to aid conservation.
Geocomputation may be viewed as the application of a computational
science paradigm to study a wide range of problems in geographical
systems contexts.
Based on an international symposium held in Tokyo, the volume combines papers in the fields of gravity, geoid and marine geodesy. Special emphasis is placed on the use of gravity in modeling tectonic processes and the problems of geophysical inversion. In addition, absolute and relative gravity measurement in static and airborne mode, satellite altimetry, geopotential modeling, and global geodynamics are dealt with. The field of marine geodesy includes contributions on sea level change, seafloor deformation and mapping, sea surface positioning, electronic charting, and datum transformations.
Effective utilization of satellite positioning, remote sensing, and GIS in disaster monitoring and management requires research and development in numerous areas, including data collection, information extraction and analysis, data standardization, organizational and legal aspects of sharing of remote sensing information. This book provides a solid overview of what is being developed in the risk prevention and disaster management sector.
This book provides a comprehensive summary of the recent developments in wind erosion research and a clear outline of its future directions. The physics of wind erosion, from particle entrainment to transport and deposition, is described with rigor from the viewpoints of fluid dynamics and soil physics. The techniques for quantitative wind- erosion prediction through computational modelling constitutes a unique feature of this book in contrast to others published in the same field. The author has advocated the development of integrated wind-erosion modelling systems which couple dynamic models for the atmosphere and land surface with spatially distributed data for land-surface conditions. The successful applications of such a system have demonstrated its usefulness in wind-erosion assessment and prediction on regional to continental scales. This book offers a valuable reference point for researchers and postgraduate students engaged in wind-erosion related studies, ranging from global climate change to atmospheric aerosols, dust storms, air quality, and land conservation. The second edition has been expanded and updated throughout. It includes new information regarding mineral dust, a major focal point of studies on climate change in recent years as well as lidar information. It features some simplified sections to be more readily accessible by readers.
The Real and Virtual Worlds of Spatial Planning brings together contributions from leaders in landscape, transportation, and urban planning. They present case studies - from North America, Europe, Australia, Asia and Africa - that ground the exploration of ideas in the realities of sustainable urban and regional planning, landscape planning and present the prospects for using virtual worlds for modeling spatial environments and their application in planning. The first part explores the challenges for planning in the real world that are caused by the dynamics of socio-spatial systems as well as by the contradictions of their evolutionary trends related to their spatial layout. The second part presents diverse concepts to model, analyze, visualize, monitor and control socio-spatial systems by using virtual worlds
In recent years 3D geo-information has become an important research area due to the increased complexity of tasks in many geo-scientific applications, such as sustainable urban planning and development, civil engineering, risk and disaster management and environmental monitoring. Moreover, a paradigm of cross-application merging and integrating of 3D data is observed. The problems and challenges facing today's 3D software, generally application-oriented, focus almost exclusively on 3D data transportability issues - the ability to use data originally developed in one modelling/visualisation system in other and vice versa. Tools for elaborated 3D analysis, simulation and prediction are either missing or, when available, dedicated to specific tasks. In order to respond to this increased demand, a new type of system has to be developed. A fully developed 3D geo-information system should be able to manage 3D geometry and topology, to integrate 3D geometry and thematic information, to analyze both spatial and topological relationships, and to present the data in a suitable form. In addition to the simple geometry types like point line and polygon, a large variety of parametric representations, freeform curves and surfaces or sweep shapes have to be supported. Approaches for seamless conversion between 3D raster and 3D vector representations should be available, they should allow analysis of a representation most suitable for a specific application.
This book covers various aspects of spatial data modelling specifically regarding three-dimensional (3D) modelling and structuring. The realization of "true" 3D geoinformation spatial systems requires a high input, and the developmental process is taking place in various research centers and universities around the globe. The development of such systems and solutions, including the modelling theories are presented in this book.
This book provides a general overview of research activities related to locati- based services. These activities have emerged over the last years, especially around issues of positioning, sensor fusion, spatial modelling, cartographic communi- tion as well as in the ? elds of ubiquitious cartography, geo-pervasive services, user-centered modelling and geo-wiki activities. The innovative and contemporary character of these topics has led to a great variety of interdisciplinary contributions, from academia to business, from computer science to geodesy. Topics cover an enormous range with heterogenous relationships to the main book issues. Whilst contemporary cartography aims at looking at new and ef? cient ways for com- nicating spatial information, the development and availability of technologies like mobile networking, mobile devices or short-range sensors lead to interesting new possibilities for achieving this aim. By trying to make use of available technologies, cartography and a variety of related disciplines look speci? cally at user-centered and context-aware system development, as well as new forms of supporting way? nding and navigation systems. The contributions are a selection of full reviewed papers submitted to the th 5 Conference on Location Based Services and TeleCartography in Salzburg November 2008, jointly organized by Salzburg Research and Vienna University of Technology, Research Group Cartography. The production of this book would not have been possible without the prof- sional and formidable work of Manuela Schmidt and Felix Ortag. The editors are grateful for their help as well as for the help of Sven Leitinger.
This book provides for the first time a general overview of research activities related to location and map-based services. These activities have emerged over the last years, especially around issues of positioning, spatial modelling, cartographic communication as well as in the fields of ubiquitious cartography, geo-pervasive services, user-centered modelling and geo-wiki activities. The innovative and contemporary character of these topics has lead to a great variety of interdisciplinary contributions, from academia to business, from computer science to geodesy. Topics cover an enormous range with heterogenous relationships to the main book issues. Whilst contemporary cartography aims at looking at new and efficient ways for communicating spatial information the development and availability of technologies like mobile networking, mobile devices or short-range sensors lead to interesting new possibilities for achieving this aim. By trying to make use of available technologies, cartography and a variety of related disciplines look specifically at user-centered and conte- aware system development, as well as new forms of supporting wayfinding and navigation systems. Contributions are provided in five main sections and they cover all of these aspects and give a picture of the new and expanding field of Location Based Services and TeleCartography. Georg Gartner, Vienna, Austria William Cartwright, Melbourne, Australia Michael Peterson, Omaha, USA Table of Contents Georg Gartner LBS and TeleCartography: About the book. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 A series of Symposiums on LBS and TeleCartography. . . . . . . . . . . . . . . . . . . . . . 1 2 Progression of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2. 1 Terms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2. 2 Elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Structure of the book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lessons learned in the last several years have given clear indications that the prediction and efficient monitoring of disasters is one of the critical factors in decision-making process. In this respect space-based technologies have the great potential of supplying information in near real time. Earth observation satellites have already demonstrated their flexibility in providing data to a wide range of applications: weather forecasting, person and vehicle tracking, alerting to disaster, forest fire and flood monitoring, oil spills, spread of desertification, monitoring of crop and forestry damages. This book focuses on a wider utilisation of remote sensing in disaster management. The discussed aspects comprise data access/delivery to the users, information extraction and analysis, management of data and its integration with other data sources (airborne and terrestrial imagery, GIS data, etc.), data standardization, organisational and legal aspects of sharing remote sensing information.
This exceptional work provides readers with an introduction to the state-of-the-art research on data warehouse design, with many references to more detailed sources. It offers a clear and a concise presentation of the major concepts and results in the subject area. Malinowski and Zim nyi explain conventional data warehouse design in detail, and additionally address two innovative domains recently introduced to extend the capabilities of data warehouse systems: namely, the management of spatial and temporal information.
Until the 1980s, a tacit agreement among many physical oceanographers was that nothing deserving attention could be found in the upper few meters of the ocean. The lack of adequete knowledge about the near-surface layer of the ocean was mainly due to the fact that the widely used oceanographic instruments (such as bathythermographs, CTDs, current meters, etc.) were practically useless in the upper few meters of the ocean. Interest in the ne- surface layer of the ocean rapidly increased along with the development of remote sensing techniques. The interpretation of ocean surface signals sensed from satellites demanded thorough knowledge of upper ocean processes and their connection to the ocean interior. Despite its accessibility to the investigator, the near-surface layer of the ocean is not a simple subject of experimental study. Random, sometimes huge, vertical motions of the ocean surface due to surface waves are a serious complication for collecting quality data close to the ocean surface. The supposedly minor problem of avoiding disturbances from ships' wakes has frustrated several generations of oceanographers attempting to take reliable data from the upper few meters of the ocean. Important practical applications nevertheless demanded action, and as a result several pioneering works in the 1970s and 1980s laid the foundation for the new subject of oceanography - the near-surface layer of the ocean.
Geographic information is a key element for our modern society. Put s- ply, it is information whose spatial (and often temporal) location is fun- mental to its value, and this distinguishes it from many other types of data, and analysis. For sustainable development, climate change or more simply resource sharing and economic development, this information helps to - cilitate human activities and to foresee the impact of these activities in space as well as, inversely, the impact of space on our lives. The Inter- tional Symposium on Spatial Data Handing (SDH) is a primary research forum where questions related to spatial and temporal modelling and analysis, data integration, visual representation or semantics are raised. The first symposium commenced in 1984 in Zurich and has since been organised every two years under the umbrella of the International Geographical Union Commission on Geographical Information Science (http: //www. igugis. org). Over the last 28 years, the Symposium has been held in: st 1 - Zurich, 1984 nd 2 - Seattle, 1986 rd 3 - Sydney, 1988 th 4 - Zurich, 1990 th 5 - Charleston, 1992 th 6 - Edinburgh, 1994 th 7 - Delft, 1996 th 8 - Vancouver, 1998 th 9 - Beijing, 2000 th 10 - Ottawa, 2002 th 11 - Leicester, 2004 th 12 - Vienna, 2006 th This book is the proceedings of the 13 International Symposium on Spatial Data Handling."
The book serves as a collection of multi-disciplinary contributions related to Geographic Hypermedia and highlights the technological aspects of GIS. Specifically, it focuses on its database and database management system. The methodologies for modeling and handling geographic data are described. It presents the novel models, methods and tools applied in Spatial Decision Support paradigm.
This book is a result of a career spent developing and applying computer techniques for the geosciences. The need for a geoscience modeling reference became apparent during participation in several workshops and conferences on the subject in the last three years. For organizing these, and for the lively discussions that ensued and inevitably contributed to the contents, I thank Keith Turner, Brian Kelk, George Pflug and Johnathan Raper. The total number of colleagues who contributed in various ways over the preceding years to the concepts and techniques presented is beyond count. The book is dedicated to all of them. Compilation of the book would have been impossible without assistance from a number of colleagues who contributed directly. In particular, Ed Rychkun, Joe Ringwald, Dave Elliott, Tom Fisher and Richard Saccany reviewed parts of the text and contributed valuable comment. Mohan Srivastava reviewed and contributed to some of the geostatistical presentations. Mark Stoakes, Peter Dettlaff and Simon Wigzell assisted with computer processing of the many application examples. Anar Khanji and Randal Crombe assisted in preparation of the text and computer images. Klaus Lamers assisted with printing. The US Geological Survey, the British Columbia Ministry of Environment, Dave Elliott and others provided data for the application examples. My sincere thanks to all of them.
This volume contains selected up-to-date professional papers prepared by specialists from various disciplines related to geosciences and water resources. Thirty papers discuss different aspects of environmental data modeling. It provides a forum bringing together contributions, both theoretical and applied, with special attention to Water in Ecosystems, Global Atmospheric Evolution, Space and Earth Remote Sensing, Regional Environmental Changes, Accessing Geoenvironmental Data and Ecotoxicological Issues. "Geosciences and Water Resources: Environmental Data Modeling" is now the fourth volume in the Series "Data and Knowledge in a Changing World". Launched by CODATA after the 14th International Conference of the Committee on Data for Sciences and Technology, in Chambery, the purpose of this new Series is to collect from widely varying fields a wealth of information pertaining to the intelligent exploitation of data in science and technology and to make that information available to a multidisciplinary community. The present series encompasses a broad range of contributions, including computer-related handling and visualization of data, to the major scientific, tech nical, medical and social fields. The titles of the previous published volumes are: The Information Revolution: Impact on Science and Technology. Modeling Complex Data for Creating Information. Industrial Information and Design Issues.
Planning Support Systems: Retrospect and Prospect It has been nearly twenty years since the term 'planning support systems' (PSS) first appeared in an article by Britton Harris (Harris 1989) and more than ten years since the concept was more broadly introduced in the academic literature (Harris and Batty 1993; Batty 1995; Klosterman 1997). As a result, the publication of a new book on PSS provides an excellent opportunity to assess past progress in the field and speculate on future developments. PSS have clearly become very popular in the academic world. This is the fourth edited book devoted to the topic following Brail and Klosterman (2001), Geertman and Stillwell (2003), and a third by Brail (2008). Papers devoted to PSS have been published in the leading planning journals and the topic has become a regular theme at academic conferences around the world; it has even spawned intellectual o- spring such as spatial planning and decision support systems (SPDSS) and public participation planning support systems (PP-PSS). However, as Geertman and Stillwell point out in their introductory chapter, the experience with PSS in the world of professional practice has been disappointing. A substantial number of PSS have been developed but most of them are academic p- totypes or 'one off' professional applications that have not been adopted elsewhere.
Terrain has a profound effect upon the strategy and tactics of any military engagement and has consequently played an important role in determining history. In addition, the landscapes of battle, and the geology which underlies them, has helped shape the cultural iconography of battle certainly within the 20th century. In the last few years this has become a fertile topic of scientific and historical exploration and has given rise to a number of conferences and books. The current volume stems from the international Terrain in Military History conference held in association with the Imperial War Museum, London and the Royal Engineers Museum, Chatham, at the University of Greenwich in January 2000. This conference brought together historians, geologists, military enthusiasts and terrain analysts from military, academic and amateur backgrounds with the aim of exploring the application of modem tools of landscape visualisation to understanding historical battlefields. This theme was the subject of a Leverhulme Trust grant (F/345/E) awarded to the University of Greenwich and administered by us in 1998, which aimed to use the tools of modem landscape visualisation in understanding the influence of terrain in the First World War. This volume forms part of the output from this grant and is part of our wider exploration of the role of terrain in military history. Many individuals contributed to the organisation of the original conference and to the production of this volume. |
You may like...
Privacy and Identity Management for Life…
Michele Bezzi, Penny Duquenoy, …
Hardcover
R1,441
Discovery Miles 14 410
Advanced Machine Vision Paradigms for…
Tapan K. Gandhi, Siddhartha Bhattacharyya, …
Paperback
R3,019
Discovery Miles 30 190
Modelling, Estimation and Control of…
Alessandro Chiuso, Luigi Fortuna, …
Hardcover
R4,145
Discovery Miles 41 450
Mapping the Epidemic, Volume 9 - A…
Emanuela Casti, Fulvio Adobati, …
Paperback
R2,819
Discovery Miles 28 190
Comprehensive Asymmetric Catalysis…
Eric N. Jacobsen, Andreas Pfaltz, …
Hardcover
R4,089
Discovery Miles 40 890
Mobile Information Systems Leveraging…
Gloria Bordogna, Paola Carrara
Hardcover
R2,678
Discovery Miles 26 780
Microbial Surfaces - Structure…
Terri A. Camesano, Charlene Mello
Hardcover
R1,794
Discovery Miles 17 940
|