![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Earth & environment > Geography > Cartography, geodesy & geographic information systems (GIS) > Remote sensing
Research into microwave radiation from the Earth s surface in the presence of vegetation canopies, as well as the development of algorithms for retrieval of soil and vegetation parameters from microwave radiometric measurements, have been actively conducted for the last thirty years by many scientific groups and organizations all over the world. The capability of the microwave radiometric method to determine soil moisture and vegetation biometric indices was revealed a quarter of a century ago by the author and many of his colleagues. In fact, soil moisture and vegetation covers play a key role in the hydrological cycle and in water and energy transfer on the border of land surface and atmosphere through evaporation and transpiration. Accomplishment of large international projects that include global monitoring of the hydrological state of land surface (EOS Aqua, SMOS, Hydros, and others) shows that microwave radiometry of soil and vegetation more and more has become an instrument of practical application and operational use. In this respect, a systematic account of questions concerning the microwave radiometry of the Earth s surface in the presence of vegetation canopies seems to be useful and is the main objective of the book."
Decision Support Systems for Risk-Based Management of Contaminated Sites addresses decision making in environmental risk management for contaminated sites, focusing on the potential role of decision support systems in informing the management of chemical pollutants and their effects. Considering the environmental relevance and the financial impacts of contaminated sites all over the post-industrialized countries and the complexity of decision making in environmental risk management, decision support systems can be used by decision makers in order to have a more structured analysis of a problem at hand and define possible options of intervention to solve the problem. Accordingly, the book provides an analysis of the main steps and tools for the development of decision support systems, namely: environmental risk assessment, decision analysis, spatial analysis and geographic information system, indicators and endpoints. Sections are dedicated to the review of decision support systems for contaminated land management and for inland and coastal waters management. Both include discussions of management problem formulation and of the application of specific decision support systems. This book is a valuable support for environmental risk managers and for decision makers involved in a sustainable management of contaminated sites, including contaminated lands, river basins and coastal lagoons. Furthermore, it is a basic tool for the environmental scientists who gather data and perform assessments to support decisions, developers of decision support systems, students of environmental science and members of the public who wish to understand the assessment science that supports remedial decisions.
This book is a collection of the most recent and significant research on algorithms for the analysis of polar sea-ice SAR data. All algorithms are implemented and tested. One chapter is from the Alaskan SAR Facility, the major NASA archive of polar SAR data and a source of many SAR analysis algorithms, including high-level results of such analyses. One chapter has been written jointly by the US and Canadian Ice Centers, which provide e.g., operational sea-ice products to the shipping and oil-drilling industries and to polar explorations. This book will be useful to all researchers in the polar sciences community. Within the framework of Ispra Courses, a course on "Applications of Remote Sensing to Agrometeorology" was held from April 6th to 10th, 1987 at the Joint Research Centre of the European Communities, Ispra Italy. The purpose of the course was to familiarize scientists, active in Agrometeorology and related fields, with remote sensing techniques and their potential applications in their respective disciplines. Conventional ground investigations in various fields of natural sciences such as hydrology, pedology and agrometeorology can be supple mented by a range of instruments carried by airborne or earth orbiting platforms. The last few years, in particular, have seen many developments in this respect and a growing amount of information can now be derived not only from dedicated earth resources satellites such as the LANDSAT and SPOT, but also from other platforms such as METEOSAT and the series of NOAA-TIROS. Future platforms (ERS-l, Space Station, etc.) with their advanced sensors will further broaden the range of applications open to the investigators. The use of these data sources, together with field investigations, can lead, at a reduced cost, to a better characterization of the spatial and temporal properties of natural systems."
The completion of this collection took many months, and, for a variety of reason, required the assistance and/or indulgence of a number of individuals. First and foremost, I would like to thank Tim Hudson for his useful input and support at the outset of the project Likewise, I would like to thank Jesse O. McKee for providing a hospitable environment during my affiliation with the University of Southern Mississippi. At Louisiana State University I am grateful to Sam Hilliard and Carville Earle for their invaluable understanding. The book became part of the GeoJoumal Library as a result of Wolf Tietze's confidence in the topic, and because of Henri G. van Dorssen's (and Kluwer Academic Publishers') good nab.lre - despite numerous 'problems'. Curtis C. Roseman, and the remainder of the Geography Department at the University of Southern California (where I completed many last minute details for the volume), are to be thanked for the cordial and warm environ ment I received while a visitor in Los Angeles. Finally, no multi-authored collection reaches completion without the help of many patient contributors. This particular book suffered many set-backs along the way, so I am particularly grateful to the authors herein. They demonstrated their compassion and exceptional professionalism throughout, by never second-guessing my decisions, and by allowing me to remedy the set-backs in my own way. They were a pleasure to work with, and they should take pride in their achievements."
Fully updated and containing significant new material on photography, laser profiling and image processing, the third edition of this popular textbook covers a broad range of remote sensing applications and techniques across the Earth, environmental and planetary sciences. It focuses on physical principles, giving students a deeper understanding of remote sensing systems and their possibilities, while remaining accessible to those with less mathematical training by providing a step-by-step approach to quantitative topics. Boxed examples, additional photos and numerous colour images engage students and show them how the theory relates to the many real-world applications. Chapter summaries, review questions and additional problems allow students to check their understanding of key concepts and practise handling real data for themselves. Supplementary online material includes links to freely available software, animations, computer programs, colour images and other web-based resources of interest.
One of the key milestones of radar remote sensing for civil applications was the launch of the European Remote Sensing Satellite 1 (ERS 1) in 1991. The platform carried a variety of sensors; the Synthetic Aperture Radar (SAR) is widely cons- ered to be the most important. This active sensing technique provides all-day and all-weather mapping capability of considerably ?ne spatial resolution. ERS 1 and its sister system ERS 2 (launch 1995) were primarily designed for ocean app- cations, but soon the focus of attention turned to onshore mapping. Examples for typical applications are land cover classi?cation also in tropical zones and mo- toring of glaciers or urban growth. In parallel, international Space Shuttle Missions dedicated to radar remote sensing were conducted starting already in the 1980s. The most prominent were the SIR-C/X-SAR mission focussing on the investigation of multi-frequency and multi-polarization SAR data and the famous Shuttle Radar Topography Mission (SRTM). Data acquired during the latter enabled to derive a DEM of almost global coverage by means of SAR Interferometry. It is indispe- ableeventodayandformanyregionsthebestelevationmodelavailable. Differential SAR Interferometry based on time series of imagery of the ERS satellites and their successor Envisat became an important and unique technique for surface defor- tion monitoring. The spatial resolution of those devices is in the order of some tens of meters.
Space is no longer the special, protected domain that it was in the past. Because of the importance of its practical applications, it is becoming integrated into the mainstream of economic activity. Technology push is giving way to the assessment of market opportunities and demand pull. Funding from the public sector is declining while interest in private financing is steadily growing. The value-added and service industries are increasing in importance. New technologies will be developed in a context of privatisation, de-regulation and globalization. An international and interdisciplinary Symposium was organized by the International Space University to bring together a diverse group of people, technical and non-technical, engaged in the creation of new approaches to space applications, in order to share experiences and to exchange ideas on the way forward. The Proceedings of this Symposium make stimulating reading for all who are engaged in the market-place of space and its applications.
The ability to extract generic 3D objects from images is a crucial step towards automation of a variety of problems in cartographic database compilation, industrial inspection and assembly, and autonomous navigation. Many of these problem domains do not have strong constraints on object shape or scene content, presenting serious obstacles for the development of robust object detection and delineation techniques. Geometric Constraints for Object Detection and Delineation addresses these problems with a suite of novel methods and techniques for detecting and delineating generic objects in images of complex scenes, and applies them to the specific task of building detection and delineation from monocular aerial imagery. PIVOT, the fully automated system implementing these techniques, is quantitatively evaluated on 83 images covering 18 test scenes, and compared to three existing systems for building extraction. The results highlight the performance improvements possible with rigorous photogrammetric camera modeling, primitive-based object representations, and geometric constraints derived from their combination. PIVOT's performance illustrates the implications of a clearly articulated set of philosophical principles, taking a significant step towards automatic detection and delineation of 3D objects in real-world environments. Geometric Constraints for Object Detection and Delineation is suitable as a textbook or as a secondary text for a graduate-level course, and as a reference for researchers and practitioners in industry.
The definitive guide to bringing accuracy to measurement, updated and supplemented Adjustment Computations is the classic textbook for spatial information analysis and adjustment computations, providing clear, easy-to-understand instruction backed by real-world practicality. From the basic terms and fundamentals of errors to specific adjustment computations and spatial information analysis, this book covers the methodologies and tools that bring accuracy to surveying, GNSS, GIS, and other spatial technologies. Broad in scope yet rich in detail, the discussion avoids overly-complex theory in favor of practical techniques for students and professionals. This new sixth edition has been updated to align with the latest developments in this rapidly expanding field, and includes new video lessons and updated problems, including worked problems in STATS, MATRIX, ADJUST, and MathCAD. All measurement produces some amount of error; whether from human mistakes, instrumentation inaccuracy, or environmental features, these errors must be accounted and adjusted for when accuracy is critical. This book describes how errors are identified, analyzed, measured, and corrected, with a focus on least squares adjustment the most rigorous methodology available. * Apply industry-standard methodologies to error analysis and adjustment * Translate your skills to the real-world with instruction focused on the practical * Master the fundamentals as well as specific computations and analysis * Strengthen your understanding of critical topics on the Fundamentals in Surveying Licensing Exam As spatial technologies expand in both use and capability, so does our need for professionals who understand how to check and adjust for errors in spatial data. Conceptual knowledge is one thing, but practical skills are what counts when accuracy is at stake; Adjustment Computations provides the real-world training you need to identify, analyze, and correct for potentially crucial errors.
Remote sensing of our environment is becoming increasingly accessible and important in today s society. This book aims to highlight some of the broad and multi-disciplinary applications, and emerging practices, that remote sensing and photogrammetric technologies lend themselves to. The papers have been selected from the 13th and 14th Australasian Remote Sensing and Photogrammetry Conferences given by experts in remote sensing, spatial analysis and photogrammetry from across the Asia Pacific region. They are presented here as a collection of peer reviewed papers covering research into areas such as data fusion techniques and their applications in environmental monitoring, synoptic monitoring and data processing, terrestrial and marine applications of remote sensing, and photogrammetry. "
This book documents research conducted on the analysis of urban growth and sprawl by using remote sensing data and GIS techniques. The research was conducted between 1980-2010 in the city of Kolkata, India. The aim of the research was to use metrics that were less demanding in terms of data and computation than normal metrics. However, it has been found that most of them were inferior in capturing insights of urban sprawl. For this book, some of these metrics have therefore been modified and new ones are proposed. The research focuses on problems associated with the analysis of urban growth by using remote sensing data from a technological perspective.
Climate change has been addressed since last decade based on the influence of human activities like production of industrial effluents, land use changes and other activities due to development of the society. These are very important issues no doubt but the activities due to the influence of extraterrestrial phenomena have not been given its due importance. An attempt is being made here to understand the influence of extraterrestrial activities as one of the important factors of climate change has been attempted here. The influence of Sun and distant stars on the environment of the earth has been studied during the cyclic changes in the Sun as well as episodic changes in the environment due to the effect of other celestial objects in between Sun-Earth environment. The study has been carried out based on the changes within the Sun as well as changes during the solar eclipse. During these extra terrestrial changes it has been observed that the earth changes in its atmosphere as well as geosphere, which may have local effect but the increase of these local effect in large scale may contribute to the climate change. Solar radiation drives atmospheric circulation. Since solar radiation represents almost all the energy available to the Earth, accounting for solar radiation and how it interacts with the atmosphere and the Earth's surface is fundamental to understanding the Earth's energy budget.
Wetlands are, by their very nature, ephemeral and transitional, which makes them challenging to characterize. Yet the need for characterizing wetlands continues to grow, particularly as we develop a better understanding of the wealth of ecosystem services that they provide. Wetland Landscape Characterization: Practical Tools, Methods, and Approaches for Landscape Ecology, Second Edition shows how wetland characterization tools, methods, and approaches can be integrated to more effectively address twenty-first-century wetland issues. A Practical Toolbox for Integrated Wetland Landscape Characterization The book explains how to locate, identify, and map the extent of wetlands to learn more about their importance to society and the larger landscape. It examines jurisdictional, regulatory, and practical applications from the scientific, engineering, and lay perspectives. Fully updated, the second edition reflects an emerging infrastructural, ecosystem goods-and-services perspective to better assist readers who may encounter these concepts and challenges as they assess and characterize wetlands. Examples and case studies illustrate a variety of situations and solutions, highlighting the use of current techniques to assess, inventory, and monitor natural resources under changing conditions. These examples offer lessons and ideas for the issues encountered every day by wetland landscape ecology practitioners. The book also refers readers to additional resources to help them solve specific challenges. New in This Edition Updates of practical geospatial methods More project-driven examples A description of the pitfalls of using ecological data at landscape scales, along with solutions Alternative techniques for a variety of practitioners Linkages between field and landscape ecological practices Online resources for practitioners New illustrations This book helps readers develop the concepts, skills, and understanding of how to best achieve project goals in the rapidly changing disciplines of landscape science and wetland ecology and management. A valuable resource, it provides practical tools, methods, and approaches for conceptualizing, designing, and implementing broad-scale wetland projects that take into account critical societal linkages.
The International Symposium on Spatial Data Handling is the premier research forum for Geographic Information Science. The Symposium is particularly strong in respect to identifying significant new developments in this field. The papers published in this volume are carefully refereed by an international programme committee composed of experts in various areas of GIS who are especially renowned for their scientific innovation.
One of major challenges facing Earth's science in the next decade and beyondis the development of an accurate long term observational data set to study global change. To accomplish this, a wide range of observations will be required to provide both new measurements, not previously achievable and measurements with a greater degreee of accuracy and resolution than the ones which are presently and currently available. Among the parameters that are currently retrieved from satellite vertical sounding observations, temperature and moisture profiles are the most important for the description of the thermodynamic state of the medium. Other parameters, like those describing the cloud fields, the surface state or the conditions close to the surface are also key parameters for meteorology and climatology. A new generation of high spectral atmospheric sounders in the infrared has recently been designed to provide both new and more accurate data about the atmosphere, land and oceans for application to climate studies. Among the important observations that these instruments should contribute to the climate data set are day and night global measurements of: atmospheric temperature profiles; relative humidity profiles; cloud field parameters; total ozone burden of the atmosphere; distribution of minor atmospehric gases (methane, carbonmonoxide and nitrous oxide).
J.-E DUBOIS and N. GERSHON As with Volume 1 in this series, this book was inspired by the Symposium on "Communications and Computer Aided Systems" held at the 14th International CODATA Conference in September 1994 in Chambery, France. This book was conceived and influenced by the discussions at the Symposium and most of the contributions were written following the Conference. Whereas the first volume dealt with the numerous challenges facing the information revolution, especially its communication aspects, this one provides an insight into the recent tools provided by computer science for handling the complex aspects of scientific and technological data. This volume, "Modeling Complex Data for Creating Information," is concerned with real and virtual objects often involved with data handling processes encountered frequently in modeling physical phenomena and systems behavior. Topics concerning modeling complex data for creating information include: * Object oriented approach for structuring data and knowledge * Imprecision and uncertainty in information systems * Fractal modeling and shape and surface processing * Symmetry applications for molecular data The choice of these topics reflects recent developments in information systems technologies. One example is object oriented technology. Recently, research, development and applications have been using object-oriented modeling for computer handling of data and data management. Object oriented technology offers increasingly easy-to-use software applications and operating systems. As a result, science and technology research and applications can now provide more flexible and effective services.
This book examines current trends and developments in the methods and applications of geospatial analysis and highlights future development prospects. It provides a comprehensive discussion of remote sensing- and geographical information system (GIS)-based data processing techniques, current practices, theories, models, and applications of geospatial analysis. Data acquisition and processing techniques such as remote sensing image selections, classifications, accuracy assessments, models of GIS data, and spatial modeling processes are the focus of the first part of the book. In the second part, theories and methods related to fuzzy sets, spatial weights and prominence, geographically weighted regression, weight of evidence, Markov-cellular automata, artificial neural network, agent-based simulation, multi-criteria evaluation, analytic hierarchy process, and a GIS network model are included. Part three presents selected best practices in geospatial analysis. The chapters, all by expert authors, are arranged so that readers who are new to the field will gain an overview and important insights. Those readers who are already practitioners will gain from the advanced and updated materials and state-of-the-art developments in geospatial analysis.
This book offers detailed discussion of dielectric measurement and behaviour of wet soil, from theoretical and experiment points of view. The author describes numerous microwave measurement techniques and protocols, and shows how to evaluate and choose among them. The book is written primarily with the requirements of interdisciplinary researchers in agriculture and soil science in mind.
Cartography and geographic information (GI) are remarkably appropriate for the requirements of early warning (EW) and crisis management (CM). The use of geospatial technology has increased tremendously in the last years. ICT has changed from just using maps created in advance, to new approaches, allowing individuals (decision-makers) to use cartography interactively, on the basis of individual user's requirements. The new generation of cartographic visualizations based on standardisation, formal modelling, use of sensors, semantics and ontology, allows for the better adaptation of information to the needs of the users. In order to design a new framework in pre-disaster and disaster management safety/security/privacy aspects of institutions and citizens need to be considered. All this can only be achieved by demonstrating new research achievements, sharing best practices (e.g. in the health area) and working towards the wider acceptance of geospatial technology in society, with the help of education and media. This book will outline research frontiers and applications of cartography and GI in EW and CM and document their roles and potentials in wider processes going on in information/knowledge-based societies.
For the fourth consecutive year, the Association of Geographic Infor- tion Laboratories for Europe (AGILE) promoted the edition of a book with the collection of the scientific papers that were submitted as full-papers to the AGILE annual international conference. Those papers went through a th competitive review process. The 13 AGILE conference call for fu- papers of original and unpublished fundamental scientific research resulted in 54 submissions, of which 21 were accepted for publication in this - lume (acceptance rate of 39%). Published in the Springer Lecture Notes in Geoinformation and Car- th graphy, this book is associated to the 13 AGILE Conference on G- graphic Information Science, held in 2010 in Guimaraes, Portugal, under the title "Geospatial Thinking." The efficient use of geospatial information and related technologies assumes the knowledge of concepts that are fundamental components of Geospatial Thinking, which is built on reasoning processes, spatial conc- tualizations, and representation methods. Geospatial Thinking is associated with a set of cognitive skills consisting of several forms of knowledge and cognitive operators used to transform, combine or, in any other way, act on that same knowledge. The scientific papers published in this volume cover an important set of topics within Geoinformation Science, including: Representation and Visualisation of Geographic Phenomena; Spatiotemporal Data Analysis; Geo-Collaboration, Participation, and Decision Support; Semantics of Geoinformation and Knowledge Discovery; Spatiotemporal Modelling and Reasoning; and Web Services, Geospatial Systems and Real-time Appli- tions."
The IAG International Symposium on Gravity, Geoid and Geodynamics 2000 (GGG2000) took place in Banff, Alberta, Canada, from July 31 to August 4, 2000. This symposium continued the tradition of mid-term meetings ("GraGeoMar96: Gravity, Geoid and Marine Geodesy," Tokyo, Japan, Sept. 30 - Oct. 5,1996) held between the joint symposia of the International Geoid and Gravity Commissions ("1st Joint Meeting of the International Gravity Commission and the International Geoid Commission," Graz, Austria, Sept. 11-17, 1994 and "2nd Joint Meeting of the International Gravity Commission and the International Geoid Commission," Trieste, Italy, Sept. 7-12, 1998). This time, geodynamics was chosen as the third topic to accompany the of gravity and geoid. The symposium thus aimed and succeeded at bringing traditional topics together geodesists and geophysicists working in the general areas of gravity, geoid and geodynamics. Besides covering the traditional research areas, special attention was paid to the use of geodetic methods for geodynamics studies, dedicated satellite missions, airborne surveys, arctic regions geodesy and geodynamics, new mathematical methods and the integration of geodetic and geophysical information. The Scientific Committee members (Jean Dickey, Martine Feissel, Rene Forsberg, Petr Holota, Inginio Marson, Masao Nakada, Richard W. Peltier, Reiner Rummel, Burkhard Schaffrin, Klaus Peter Schwarz, Michael G. Sideris, DetlefWolf and Patrick Wu) are sincerely thanked for selecting the session topics, which resulted in such an exciting scientific event. More specifically, the following ten sessions were organized: 1. Reference Frames and the Datum Problem C.
This book is the fruition of work from contributors to the Art and Cartography: Cartography and Art symposium held in Vienna in February 2008. This meeting brought together cartographers who were interested in the design and aesthetics elements of cartography and artists who use maps as the basis for their art or who incorporate place and space in their expressions. The outcome of bringing together these like minds culminated in a wonderful event, spanning three evenings and two days in the Austrian capital. Papers, exhi- tions and installations provided a forum for appreciating the endeavors of artists and cartographers and their representations of geography. As well as indulging in an expansive and expressive occasion attendees were able to re? ect on their own work and discuss similar elements in each other's work. It also allowed cartographers and artists to discuss the potential for collaboration in future research and development. To recognise the signi? cance of this event, paper authors were invited to further develop their work and contribute chapters to this book. We believe that this book marks both a signi? cant occasion in Vienna and a starting point for future collabo- tive efforts between artists and cartographers. The editors would like to acknowledge the work of Manuela Schmidt and Felix Ortag, who undertook the task of the design and layout of the chapters.
Statistical Mining and Data Visualization in Atmospheric Sciences brings together in one place important contributions and up-to-date research results in this fast moving area. Statistical Mining and Data Visualization in Atmospheric Sciences serves as an excellent reference, providing insight into some of the most challenging research issues in the field.
The book presents new clustering schemes, dynamical systems and pattern recognition algorithms in geophysical, geodynamical and natural hazard applications. The original mathematical technique is based on both classical and fuzzy sets models. Geophysical and natural hazard applications are mostly original. However, the artificial intelligence technique described in the book can be applied far beyond the limits of Earth science applications. The book is intended for research scientists, tutors, graduate students, scientists in geophysics and engineers |
You may like...
Spatial Regression Analysis Using…
Daniel A. Griffith, Yongwan Chun, …
Paperback
R3,015
Discovery Miles 30 150
Land Reclamation and Restoration…
Gouri Sankar Bhunia, Uday Chatterjee, …
Paperback
R3,021
Discovery Miles 30 210
Further Developments in the Theory and…
D.R.F. Taylor, Erik Anonby, …
Paperback
R3,819
Discovery Miles 38 190
Taking the Temperature of the Earth…
Glynn Hulley, Darren Ghent
Paperback
R2,945
Discovery Miles 29 450
Handbook of Spatial Analysis in the…
Sergio J. Rey, Rachel S. Franklin
Hardcover
R8,225
Discovery Miles 82 250
Small-Format Aerial Photography and UAS…
James S. Aber, Irene Marzolff, …
Paperback
R2,618
Discovery Miles 26 180
3D Recording and Interpretation for…
Wendy Van Duivenvoorde, Trevor Winton, …
Hardcover
R1,359
Discovery Miles 13 590
|