0
Your cart

Your cart is empty

Books > Computing & IT > Computer hardware & operating systems > Systems management

Buy Now

Soft Computing for Knowledge Discovery - Introducing Cartesian Granule Features (Hardcover, 2000 ed.) Loot Price: R4,335
Discovery Miles 43 350
Soft Computing for Knowledge Discovery - Introducing Cartesian Granule Features (Hardcover, 2000 ed.): James G. Shanahan

Soft Computing for Knowledge Discovery - Introducing Cartesian Granule Features (Hardcover, 2000 ed.)

James G. Shanahan

Series: The Springer International Series in Engineering and Computer Science, 570

 (sign in to rate)
Loot Price R4,335 Discovery Miles 43 350 | Repayment Terms: R406 pm x 12*

Bookmark and Share

Expected to ship within 12 - 17 working days

Knowledge discovery is an area of computer science that attempts to uncover interesting and useful patterns in data that permit a computer to perform a task autonomously or assist a human in performing a task more efficiently. Soft Computing for Knowledge Discovery provides a self-contained and systematic exposition of the key theory and algorithms that form the core of knowledge discovery from a soft computing perspective. It focuses on knowledge representation, machine learning, and the key methodologies that make up the fabric of soft computing - fuzzy set theory, fuzzy logic, evolutionary computing, and various theories of probability (e.g. naive Bayes and Bayesian networks, Dempster-Shafer theory, mass assignment theory, and others). In addition to describing many state-of-the-art soft computing approaches to knowledge discovery, the author introduces Cartesian granule features and their corresponding learning algorithms as an intuitive approach to knowledge discovery. This new approach embraces the synergistic spirit of soft computing and exploits uncertainty in order to achieve tractability, transparency and generalization. Parallels are drawn between this approach and other well known approaches (such as naive Bayes and decision trees) leading to equivalences under certain conditions. The approaches presented are further illustrated in a battery of both artificial and real-world problems. Knowledge discovery in real-world problems, such as object recognition in outdoor scenes, medical diagnosis and control, is described in detail. These case studies provide further examples of how to apply the presented concepts and algorithms to practical problems. The author provides web page access to an online bibliography, datasets, source codes for several algorithms described in the book, and other information. Soft Computing for Knowledge Discovery is for advanced undergraduates, professionals and researchers in computer science, engineering and business information systems who work or have an interest in the dynamic fields of knowledge discovery and soft computing.

General

Imprint: Springer
Country of origin: Netherlands
Series: The Springer International Series in Engineering and Computer Science, 570
Release date: August 2000
First published: 2000
Authors: James G. Shanahan
Dimensions: 235 x 155 x 20mm (L x W x T)
Format: Hardcover
Pages: 326
Edition: 2000 ed.
ISBN-13: 978-0-7923-7918-8
Categories: Books > Computing & IT > Computer hardware & operating systems > Systems management
Books > Computing & IT > Applications of computing > Artificial intelligence > General
LSN: 0-7923-7918-7
Barcode: 9780792379188

Is the information for this product incomplete, wrong or inappropriate? Let us know about it.

Does this product have an incorrect or missing image? Send us a new image.

Is this product missing categories? Add more categories.

Review This Product

No reviews yet - be the first to create one!

Partners