0
Your cart

Your cart is empty

Books > Computing & IT > Applications of computing > Artificial intelligence

Buy Now

Uncertainty Modelling in Data Science (Paperback, 1st ed. 2019) Loot Price: R4,214
Discovery Miles 42 140
Uncertainty Modelling in Data Science (Paperback, 1st ed. 2019): Sebastien Destercke, Thierry Denoeux, Maria Angeles Gil,...

Uncertainty Modelling in Data Science (Paperback, 1st ed. 2019)

Sebastien Destercke, Thierry Denoeux, Maria Angeles Gil, Przemyslaw Grzegorzewski, Olgierd Hryniewicz

Series: Advances in Intelligent Systems and Computing, 832

 (sign in to rate)
Loot Price R4,214 Discovery Miles 42 140 | Repayment Terms: R395 pm x 12*

Bookmark and Share

Expected to ship within 10 - 15 working days

Donate to Against Period Poverty

This book features 29 peer-reviewed papers presented at the 9th International Conference on Soft Methods in Probability and Statistics (SMPS 2018), which was held in conjunction with the 5th International Conference on Belief Functions (BELIEF 2018) in Compiegne, France on September 17-21, 2018. It includes foundational, methodological and applied contributions on topics as varied as imprecise data handling, linguistic summaries, model coherence, imprecise Markov chains, and robust optimisation. These proceedings were produced using EasyChair. Over recent decades, interest in extensions and alternatives to probability and statistics has increased significantly in diverse areas, including decision-making, data mining and machine learning, and optimisation. This interest stems from the need to enrich existing models, in order to include different facets of uncertainty, like ignorance, vagueness, randomness, conflict or imprecision. Frameworks such as rough sets, fuzzy sets, fuzzy random variables, random sets, belief functions, possibility theory, imprecise probabilities, lower previsions, and desirable gambles all share this goal, but have emerged from different needs. The advances, results and tools presented in this book are important in the ubiquitous and fast-growing fields of data science, machine learning and artificial intelligence. Indeed, an important aspect of some of the learned predictive models is the trust placed in them. Modelling the uncertainty associated with the data and the models carefully and with principled methods is one of the means of increasing this trust, as the model will then be able to distinguish between reliable and less reliable predictions. In addition, extensions such as fuzzy sets can be explicitly designed to provide interpretable predictive models, facilitating user interaction and increasing trust.

General

Imprint: Springer International Publishing AG
Country of origin: Switzerland
Series: Advances in Intelligent Systems and Computing, 832
Release date: July 2018
First published: 2019
Editors: Sebastien Destercke • Thierry Denoeux • Maria Angeles Gil • Przemyslaw Grzegorzewski • Olgierd Hryniewicz
Dimensions: 235 x 155mm (L x W)
Format: Paperback
Pages: 234
Edition: 1st ed. 2019
ISBN-13: 978-3-319-97546-7
Categories: Books > Computing & IT > Applications of computing > Artificial intelligence > General
LSN: 3-319-97546-3
Barcode: 9783319975467

Is the information for this product incomplete, wrong or inappropriate? Let us know about it.

Does this product have an incorrect or missing image? Send us a new image.

Is this product missing categories? Add more categories.

Review This Product

No reviews yet - be the first to create one!

Partners