Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 2 of 2 matches in All Departments
A Contemporary Study of Iterative Methods: Convergence, Dynamics and Applications evaluates and compares advances in iterative techniques, also discussing their numerous applications in applied mathematics, engineering, mathematical economics, mathematical biology and other applied sciences. It uses the popular iteration technique in generating the approximate solutions of complex nonlinear equations that is suitable for aiding in the solution of advanced problems in engineering, mathematical economics, mathematical biology and other applied sciences. Iteration methods are also applied for solving optimization problems. In such cases, the iteration sequences converge to an optimal solution of the problem at hand.
It is a well-known fact that iterative methods have been studied concerning problems where mathematicians cannot find a solution in a closed form. There exist methods with different behaviors when they are applied to different functions and methods with higher order of convergence, methods with great zones of convergence, methods which do not require the evaluation of any derivative, and optimal methods among others. It should come as no surprise, therefore, that researchers are developing new iterative methods frequently. Once these iterative methods appear, several researchers study them in different terms: convergence conditions, real dynamics, complex dynamics, optimal order of convergence, etc. These phenomena motivated the authors to study the most used and classical ones, for example Newton's method, Halleys method and/or its derivative-free alternatives. Related to the convergence of iterative methods, the most well-known conditions are the ones created by Kantorovich, who developed a theory which has allowed many researchers to continue and experiment with these conditions. Many authors in recent years have studied modifications of these conditions related, for example, to centered conditions, omega-conditions and even convergence in Hilbert spaces. In this monograph, the authors present their complete work done in the past decade in analysing convergence and dynamics of iterative methods. It is the natural outgrowth of their related publications in these areas. Chapters are self-contained and can be read independently. Moreover, an extensive list of references is given in each chapter in order to allow the reader to use the previous ideas. For these reasons, the authors think that several advanced courses can be taught using this book. The book's results are expected to help find applications in many areas of applied mathematics, engineering, computer science and real problems. As such, this monograph is suitable to researchers, graduate students and seminar instructors in the above subjects. The authors believe it would also make an excellent addition to all science and engineering libraries.
|
You may like...
We Were Perfect Parents Until We Had…
Vanessa Raphaely, Karin Schimke
Paperback
|