Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
The monograph provides an overview of the recent developments in modern control systems including new theoretical finding and successful examples of practical implementation of the control theory in different areas of industrial and special applications. Recent Developments in Automatic Control Systems consists of extended versions of the selected papers presented at XXVI International Conference on Automatic Control "Automation 2020" (October 13-15, 2020, Kyiv, Ukraine) which is the main Ukrainian Control Conference organized by Ukrainian Association on Automatic Control (National member organization of IFAC) and National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute". This is a third monograph in the River Publishers series in Automation, Control and Robotics, which is publishing based on the selected papers of the Ukrainian Control Conferences "Automation", in particular, first monograph "Control Systems: Theory and Applications (2018) was published based on the "Automation - 2017" and second monograph "Advanced Control Systems: Theory and Applications" - based on the "Automation - 2018". The monograph is divided into three main parts: (a) Advances in Theoretical Research of Control Systems; (b) Advances in Control Systems Application; (c) Recent Developments in Collaborative Automation. The chapters have been structured to provide an easy-to-follow introduction to the topics that are addressed, including the most relevant references, so that anyone interested in this field can get started in the area. This book may be useful for researchers and students who are interesting in recent developments of the modern control systems, robust adaptive systems, optimal control, fuzzy control, motion control, identification, modelling, differential games, evolutionary optimization, reliability control, security control, intelligent robotics and cyber-physical systems.
This book presents an authoritative collection of contributions by researchers from 16 different countries (Austria, Chile, Georgia, Germany, Mexico, Norway, P.R. of China, Poland, North Macedonia, Romania, Russia, Spain, Turkey, Ukraine, the United Kingdom and United States) that report on recent developments and new directions in advanced control systems, together with new theoretical findings, industrial applications and case studies on complex engineering systems. This book is dedicated to Professor Vsevolod Mykhailovych Kuntsevich, an Academician of the National Academy of Sciences of Ukraine, and President of the National Committee of the Ukrainian Association on Automatic Control, in recognition of his pioneering works, his great scientific and scholarly achievements, and his years of service to many scientific and professional communities, notably those involved in automation, cybernetics, control, management and, more specifically, the fundamentals and applications of tools and techniques for dealing with uncertain information, robustness, non-linearity, extremal systems, discrete control systems, adaptive control systems and others. Covering essential theories, methods and new challenges in control systems design, the book is not only a timely reference guide but also a source of new ideas and inspirations for graduate students and researchers alike. Its 15 chapters are grouped into four sections: (a) fundamental theoretical issues in complex engineering systems, (b) artificial intelligence and soft computing for control and decision-making systems, (c) advanced control techniques for industrial and collaborative automation, and (d) modern applications for management and information processing in complex systems. All chapters are intended to provide an easy-to-follow introduction to the topics addressed, including the most relevant references. At the same time, they reflect various aspects of the latest research work being conducted around the world and, therefore, provide information on the state of the art.
This monograph covers one of the divisions of mathematical theory of control which examines moving objects functionating under conflict and uncertainty conditions. To identify this range of problems we use the term "conflict con trolled processes," coined in recent years. As the name itself does not imply the type of dynamics (difference, ordinary differential, difference-differential, integral, or partial differential equations) the differential games falI within its realms. The problems of search and tracking moving objects are also referred to the field of conflict controlled process. The contents of the monograph is confined to studying classical pursuit-evasion problems which are central to the theory of conflict controlled processes. These problems underlie the theory and are of considerable interest to researchers up to now. It should be noted that the methods of "Line of Sight," "Parallel Pursuit," "Proportional N avigation,""Modified Pursuit" and others have been long and well known among engineers engaged in design of rocket and space technology. An abstract theory of dynamic game problems, in its turn, is based on the methods originated by R. Isaacs, L. S. Pontryagin, and N. N. Krasovskii, and on the approaches developed around these methods. At the heart of the book is the Method of Resolving Functions which was realized within the class of quasistrategies for pursuers and then applied to the solution of the problems of "hand-to-hand," group, and succesive pursuit."
Advanced Control Systems: Theory and Applications provides an overview of advanced research lines in control systems as well as in design, development and implementation methodologies for perspective control systems and their components in different areas of industrial and special applications. It consists of extended versions of the selected papers presented at the XXV International Conference on Automatic Control "Automatics 2018" (September 18-19, 2018, Lviv, Ukraine) which is the main Ukrainian Control Conference organized by Ukrainian Association on Automatic Control (National member organization of IFAC) and Lviv National University "Lvivska Politechnica". More than 100 papers were presented at the conference with topics including: mathematical problems of control, optimization and game theory; control and identification under uncertainty; automated control of technical, technological and biotechnical objects; controlling the aerospace craft, marine vessels and other moving objects; intelligent control and information processing; mechatronics and robotics; information measuring technologies in automation; automation and IT training of personnel; the Internet of things and the latest technologies. The book is divided into two main parts, the first concerning theory (7 chapters) and the second concerning applications (7 chapters) of advanced control systems. The first part "Advances in Theoretical Research on Automatic Control" consists of theoretical research results which deal with descriptor control impulsive delay systems, motion control in condition of conflict, inverse dynamic models, invariant relations in optimal control, robust adaptive control, bio-inspired algorithms, optimization of fuzzy control systems, and extremal routing problem with constraints and complicated cost functions,. The second part "Advances in Control Systems Applications" is based on the chapters which consider different aspects of practical implementation of advanced control systems, in particular, special cases in determining the spacecraft position and attitude using computer vision system, the spacecraft orientation by information from a system of stellar sensors, control synthesis of rotational and spatial spacecraft motion at approaching stage of docking, intelligent algorithms for the automation of complex biotechnical objects, an automatic control system for the slow pyrolysis of organic substances with variable composition, simulation complex of hierarchical systems based on the foresight and cognitive modelling, and advanced identification of impulse processes in cognitive maps. The chapters have been structured to provide an easy-to-follow introduction to the topics that are addressed, including the most relevant references, so that anyone interested in this field can get started in the area. This book may be useful for researchers and students who are interesting in advanced control systems.
This monograph covers one of the divisions of mathematical theory of control which examines moving objects functionating under conflict and uncertainty conditions. To identify this range of problems we use the term "conflict con trolled processes," coined in recent years. As the name itself does not imply the type of dynamics (difference, ordinary differential, difference-differential, integral, or partial differential equations) the differential games falI within its realms. The problems of search and tracking moving objects are also referred to the field of conflict controlled process. The contents of the monograph is confined to studying classical pursuit-evasion problems which are central to the theory of conflict controlled processes. These problems underlie the theory and are of considerable interest to researchers up to now. It should be noted that the methods of "Line of Sight," "Parallel Pursuit," "Proportional N avigation,""Modified Pursuit" and others have been long and well known among engineers engaged in design of rocket and space technology. An abstract theory of dynamic game problems, in its turn, is based on the methods originated by R. Isaacs, L. S. Pontryagin, and N. N. Krasovskii, and on the approaches developed around these methods. At the heart of the book is the Method of Resolving Functions which was realized within the class of quasistrategies for pursuers and then applied to the solution of the problems of "hand-to-hand," group, and succesive pursuit."
This book presents an authoritative collection of contributions by researchers from 16 different countries (Austria, Chile, Georgia, Germany, Mexico, Norway, P.R. of China, Poland, North Macedonia, Romania, Russia, Spain, Turkey, Ukraine, the United Kingdom and United States) that report on recent developments and new directions in advanced control systems, together with new theoretical findings, industrial applications and case studies on complex engineering systems. This book is dedicated to Professor Vsevolod Mykhailovych Kuntsevich, an Academician of the National Academy of Sciences of Ukraine, and President of the National Committee of the Ukrainian Association on Automatic Control, in recognition of his pioneering works, his great scientific and scholarly achievements, and his years of service to many scientific and professional communities, notably those involved in automation, cybernetics, control, management and, more specifically, the fundamentals and applications of tools and techniques for dealing with uncertain information, robustness, non-linearity, extremal systems, discrete control systems, adaptive control systems and others. Covering essential theories, methods and new challenges in control systems design, the book is not only a timely reference guide but also a source of new ideas and inspirations for graduate students and researchers alike. Its 15 chapters are grouped into four sections: (a) fundamental theoretical issues in complex engineering systems, (b) artificial intelligence and soft computing for control and decision-making systems, (c) advanced control techniques for industrial and collaborative automation, and (d) modern applications for management and information processing in complex systems. All chapters are intended to provide an easy-to-follow introduction to the topics addressed, including the most relevant references. At the same time, they reflect various aspects of the latest research work being conducted around the world and, therefore, provide information on the state of the art.
|
You may like...
Mission Impossible 6: Fallout
Tom Cruise, Henry Cavill, …
Blu-ray disc
(1)
|