![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
Showing 1 - 6 of 6 matches in All Departments
The methods of computational mechanics have been used extensively in modeling many physical systems. The use of multibody-system techniques, in particular, has been applied successfully in the study of various, fundamentally different applications. Railroad Vehicle Dynamics: A Computational Approach presents a computational multibody-system approach that can be used to develop complex models of railroad vehicle systems. The book examines several computational multibody-system formulations and discusses their computer implementation. The computational algorithms based on these general formulations can be used to develop general- and special-purpose railroad vehicle computer programs for use in the analysis of railroad vehicle systems, including the study of derailment and accident scenarios, design issues, and performance evaluation. The authors focus on the development of fully nonlinear formulations, supported by an explanation of the limitations of the linearized formulations that are frequently used in the analysis of railroad vehicle systems. The chapters of the book are organized to guide readers from basic concepts and definitions through a final understanding of the utility of fully nonlinear multibody- system formulations in the analysis of railroad vehicle systems. Railroad Vehicle Dynamics: A Computational Approach is a valuable reference for researchers and practicing engineers who commonly use general-purpose, multibody-system computer programs in the analysis, design, and performance evaluation of railroad vehicle systems.
"Computational Dynamics, 3rd edition," thoroughly revised and updated, provides logical coverage of both theory and numerical computation techniques for practical applications. The author introduces students to this advanced topic covering the concepts, definitions and techniques used in multi-body system dynamics including essential coverage of kinematics and dynamics of motion in three dimensions. He uses analytical tools including Lagrangian and Hamiltonian methods as well as Newton-Euler Equations. An educational version of multibody computer code is now included in this new edition www.wiley.com/go/shabana that can be used for instruction and demonstration of the theories and formulations presented in the book, and a new chapter is included to explain the use of this code in solving practical engineering problems. Most books treat the subject of dynamics from an analytical point of view, focusing on the techniques for analyzing the problems presented. This book is exceptional in that it covers the practical computational methods used to solve "real-world" problems. This makes it of particular interest not only for senior/ graduate courses in mechanical and aerospace engineering, but also to professional engineers.Modern and focused treatment of the mathematical techniques, physical theories and application of rigid body mechanics that emphasizes the fundamentals of the subject, stresses the importance of computational methods and offers a wide variety of examples.Each chapter features simple examples that show the main ideas and procedures, as well as straightforward problem sets that facilitate learning and help readers build problem-solving skills
This second edition presents the theory of continuum mechanics using computational methods. The text covers a broad range of topics including general problems of large rotation and large deformations and the development and limitations of finite element formulations in solving such problems. Dr Shabana introduces theories on motion kinematics, strain, forces and stresses and goes on to discuss linear and nonlinear constitutive equations, including viscoelastic and plastic constitutive models. General nonlinear continuum mechanics theory is used to develop small and large finite element formulations which correctly describe rigid body motion for use in engineering applications. This second edition features a new chapter that focuses on computational geometry and finite element analysis. This book is ideal for graduate and undergraduate students, professionals and researchers who are interested in continuum mechanics.
This book presents the nonlinear theory of continuum mechanics and demonstrates its use in developing nonlinear computer formulations for large displacement dynamic analysis. Basic concepts used in continuum mechanics are presented and used to develop nonlinear general finite element formulations that can be effectively used in large displacement analysis. The book considers two nonlinear finite element dynamic formulations: a general large deformation finite element formulation and a formulation that can efficiently solve small deformation problems that characterize very stiff structures. The book presents material clearly and systematically, assuming the reader has only basic knowledge in matrix and vector algebra and dynamics. The book is designed for use by advanced undergraduates and first-year graduate students. It is also a reference for researchers, practising engineers, and scientists working in computational mechanics, bio-mechanics, computational biology, multibody system dynamics, and other fields of science and engineering using the general continuum mechanics theory.
This book presents the nonlinear theory of continuum mechanics and demonstrates its use in developing nonlinear computer formulations for large displacement dynamic analysis. Basic concepts used in continuum mechanics are presented and used to develop nonlinear general finite element formulations that can be effectively used in large displacement analysis. The book considers two nonlinear finite element dynamic formulations: a general large deformation finite element formulation and a formulation that can efficiently solve small deformation problems that characterize very stiff structures. The book presents material clearly and systematically, assuming the reader has only basic knowledge in matrix and vector algebra and dynamics. The book is designed for use by advanced undergraduates and first-year graduate students. It is also a reference for researchers, practicing engineers, and scientists working in computational mechanics, bio-mechanics, computational biology, multibody system dynamics, and other fields of science and engineering using the general continuum mechanics theory.
This fully revised fifth edition provides comprehensive coverage of flexible multibody system dynamics. Including an entirely new chapter on the integration of geometry, durability analysis, and design, it offers clear explanations of spatial kinematics, rigid body dynamics, and flexible body dynamics, and uniquely covers the basic formulations used by the industry for analysis, design, and performance evaluation. Included are methods for formulating dynamic equations, the floating frame of reference formulation used in small deformation analysis, and the absolute nodal coordinate formulation used in large deformation analysis, as well as coverage of industry durability investigations. Illustrated with a wealth of examples and practical applications throughout, it is the ideal text for single-semester graduate courses on multibody dynamics taken in departments of aerospace and mechanical engineering, and for researchers and practicing engineers working on a wide variety of flexible multibody systems.
|
You may like...
Passing the Plate - Why American…
Christian Smith, Michael O. Emerson, …
Hardcover
R1,046
Discovery Miles 10 460
Stars of Classical
Various Artists, Emmerich Kalman/Franz Lehar/Johann Strauss II, …
CD
Best of Bach for Violin Duet
Mark Phillips, Johann Sebastian Bach
Paperback
R291
Discovery Miles 2 910
Guido Bonatti's Book Of Astronomy Part…
William Tynan
Hardcover
Time-Dependent Reliability Theory and…
Chunqing Li, Wei Yang
Paperback
R5,072
Discovery Miles 50 720
|