Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
This is the first monograph on rings closed to von Neumann regular rings. The following classes of rings are considered: exchange rings, pi-regular rings, weakly regular rings, rings with comparability, V-rings, and max rings. Every Artinian or von Neumann regular ring A is an exchange ring (this means that for every one of its elements a, there exists an idempotent e of A such that aA contains eA and (1-a)A contains (1-e)A). Exchange rings are very useful in the study of direct decompositions of modules, and have many applications to theory of Banach algebras, ring theory, and K-theory. In particular, exchange rings and rings with comparability provide a key to a number of outstanding cancellation problems for finitely generated projective modules. Every von Neumann regular ring is a weakly regular pi-regular ring (a ring A is pi-regular if for every one of its elements a, there is a positive integer n such that a is contained in aAa) and every Artinian ring is a pi-regular max ring (a ring is a max ring if every one of its nonzero modules has a maximal submodule). Thus many results on finite-dimensional algebras and regular rings are extended to essentially larger classes of rings. Starting from a basic understanding of ring theory, the theory of rings close to regular is presented and accompanied with complete proofs. The book will appeal to readers from beginners to researchers and specialists in algebra; it concludes with an extensive bibliography.
This book is the first monograph on the theory of endomorphism
rings of Abelian groups. The theory is a rapidly developing area of
algebra and has its origin in the theory of operators of vector
spaves. The text contains additional information on groups
themselves, introducing new concepts, methods, and classes of
groups. All the main fields of the theory of endomorphism rings of
Abelian groups from early results to the most recent are covered.
Neighbouring results on endomorphism rings of modules are also
mentioned. -all the necessary definitions and formulations of assertions on
Abelian groups, rings, and modules are gathered in the first two
sections;
A module M is called distributive if the lattice Lat(M) of all its submodules is distributive, i.e., Fn(G + H) = FnG + FnH for all submodules F, G, and H of the module M. A module M is called uniserial if all its submodules are comparable with respect to inclusion, i.e., the lattice Lat(M) is a chain. Any direct sum of distributive (resp. uniserial) modules is called a semidistributive (resp. serial) module. The class of distributive (resp. semidistributive) modules properly cont.ains the class ofall uniserial (resp. serial) modules. In particular, all simple (resp. semisimple) modules are distributive (resp. semidistributive). All strongly regular rings (for example, all factor rings of direct products of division rings and all commutative regular rings) are distributive; all valuation rings in division rings and all commutative Dedekind rings (e.g., rings of integral algebraic numbers or commutative principal ideal rings) are distributive. A module is called a Bezout module or a locally cyclic module ifevery finitely generated submodule is cyclic. If all maximal right ideals of a ring A are ideals (e.g., if A is commutative), then all Bezout A-modules are distributive
Preface All rings are assumed to be associative and (except for nilrings and some stipulated cases) to have nonzero identity elements. A ring A is said to be regular if for every element a E A, there exists an element b E A with a = aba. Regular rings are well studied. For example, [163] and [350] are devoted to regular rings. A ring A is said to be tr-regular if for every element a E A, there is an element n b E A such that an = anba for some positive integer n. A ring A is said to be strongly tr-regular if for every a E A, there is a positive integer n with n 1 n an E a + An Aa +1. It is proved in [128] that A is a strongly tr-regular ring if and only if for every element a E A, there is a positive integer m with m 1 am E a + A. Every strongly tr-regular ring is tr-regular [38]. If F is a division ring and M is a right vector F-space with infinite basis {ei}~l' then End(MF) is a regular (and tr-regular) ring that is not strongly tr-regular. The factor ring of the ring of integers with respect to the ideal generated by the integer 4 is a strongly tr-regular ring that is not regular.
Every Abelian group can be related to an associative ring with an identity element, the ring of all its endomorphisms. Recently the theory of endomor phism rings of Abelian groups has become a rapidly developing area of algebra. On the one hand, it can be considered as a part of the theory of Abelian groups; on the other hand, the theory can be considered as a branch of the theory of endomorphism rings of modules and the representation theory of rings. There are several reasons for studying endomorphism rings of Abelian groups: first, it makes it possible to acquire additional information about Abelian groups themselves, to introduce new concepts and methods, and to find new interesting classes of groups; second, it stimulates further develop ment of the theory of modules and their endomorphism rings. The theory of endomorphism rings can also be useful for studies of the structure of additive groups of rings, E-modules, and homological properties of Abelian groups. The books of Baer [52] and Kaplansky [245] have played an important role in the early development of the theory of endomorphism rings of Abelian groups and modules. Endomorphism rings of Abelian groups are much stu died in monographs of Fuchs [170], [172], and [173]. Endomorphism rings are also studied in the works of Kurosh [287], Arnold [31], and Benabdallah [63].
|
You may like...
|