![]() |
![]() |
Your cart is empty |
||
Showing 1 - 8 of 8 matches in All Departments
Free surface flows arise in the natural world, physical and biological sciences and in some areas of modern technology and engineering. Exam ples include the breaking of sea waves on a harbour wall, the transport of sloshing fluids in partly filled containers, and the design of micronozzles for high speed ink-jet printing. Apart from the intrinsic mathematical challenge in describing and solving the governing equations, there are usually important environmental, safety and engineering features which need to be analysed and controlled. A rich variety of techniques has been developed over the past two decades to facilitate this analysis; singular perturbations, dynamical systems, and the development of sophisticated numerical codes. The extreme and sometimes violent nature of some free surface flows taxes these methods to the limit. The work presented at the symposium addressed these limits and can be loosely classified into four areas: (i) Axisymmetric free surface flows. There are a variety of problems in the printing, glass, fertiliser and fine chemical industries in which threads of fluid are made and controlled. Presentations were made in the areas of pinch-off for inviscid and viscous threads of fluid, recoil effects after droplet formation and the control of instability by forced vibration. (ii) Dynamic wetting. The motion of three phase contact lines, which are formed at the junction between two fluids and a solid, plays an important role in fluid mechanics."
Free surface flows arise in the natural world, physical and biological sciences and in some areas of modern technology and engineering. Exam ples include the breaking of sea waves on a harbour wall, the transport of sloshing fluids in partly filled containers, and the design of micronozzles for high speed ink-jet printing. Apart from the intrinsic mathematical challenge in describing and solving the governing equations, there are usually important environmental, safety and engineering features which need to be analysed and controlled. A rich variety of techniques has been developed over the past two decades to facilitate this analysis; singular perturbations, dynamical systems, and the development of sophisticated numerical codes. The extreme and sometimes violent nature of some free surface flows taxes these methods to the limit. The work presented at the symposium addressed these limits and can be loosely classified into four areas: (i) Axisymmetric free surface flows. There are a variety of problems in the printing, glass, fertiliser and fine chemical industries in which threads of fluid are made and controlled. Presentations were made in the areas of pinch-off for inviscid and viscous threads of fluid, recoil effects after droplet formation and the control of instability by forced vibration. (ii) Dynamic wetting. The motion of three phase contact lines, which are formed at the junction between two fluids and a solid, plays an important role in fluid mechanics.
Differential equations are vital to science, engineering and mathematics, and this book enables the reader to develop the required skills needed to understand them thoroughly. The authors focus on constructing solutions analytically and interpreting their meaning and use MATLAB extensively to illustrate the material along with many examples based on interesting and unusual real world problems. A large selection of exercises is also provided.
Differential equations are vital to science, engineering and mathematics, and this book enables the reader to develop the required skills needed to understand them thoroughly. The authors focus on constructing solutions analytically and interpreting their meaning and use MATLAB extensively to illustrate the material along with many examples based on interesting and unusual real world problems. A large selection of exercises is also provided.
Waves are a ubiquitous and important feature of the physical world, and, throughout history, it has been a major challenge to understand them. This introduction to the mathematics of wave phenomena is aimed at advanced undergraduate courses for mathematicians, physicists or engineers. Some more advanced material on both linear and nonlinear waves is also included, making the book suitable for beginning graduate courses. The authors assume some familiarity with partial differential equations, integral transforms and asymptotic expansions as well as with fluid mechanics, elasticity, and electromagnetism. The context and physics that underlie the mathematics is clearly explained at the beginning of each chapter. Worked examples and exercises are supplied throughout, with solutions available to teachers.
Waves are a ubiquitous and important feature of the physical world, and, throughout history, it has been a major challenge to understand them. This introduction to the mathematics of wave phenomena is aimed at advanced undergraduate courses for mathematicians, physicists or engineers. Some more advanced material on both linear and nonlinear waves is also included, making the book suitable for beginning graduate courses. The authors assume some familiarity with partial differential equations, integral transforms and asymptotic expansions as well as with fluid mechanics, elasticity, and electromagnetism. The context and physics that underlie the mathematics is clearly explained at the beginning of each chapter. Worked examples and exercises are supplied throughout, with solutions available to teachers.
|
![]() ![]() You may like...
Miss Peregrine's Home for Peculiar…
Eva Green, Asa Butterfield, …
Blu-ray disc
![]() R29 Discovery Miles 290
|