0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Stable Isotopes to Trace Migratory Birds and to Identify Harmful Diseases - An Introductory Guide (Hardcover, 1st ed. 2016):... Stable Isotopes to Trace Migratory Birds and to Identify Harmful Diseases - An Introductory Guide (Hardcover, 1st ed. 2016)
G.J. Viljoen, A.G. Luckins, I. Naletoski
R1,521 Discovery Miles 15 210 Ships in 18 - 22 working days

This manuscript discusses the potentials of the approaches as mentioned below to monitor the AIVs in WMW. Molecular diagnostic platforms enable for accurate detection of the AIVs in the feces of infected birds. Similar technologies can be used to determine the bird species through DNA barcoding, enabling non-invasive research on the epidemiology of the disease. Wild migratory waterfowl (WMW) play significant role in the transmission of avian influenza viruses (AIVs) on large distances. Understanding bird migrations may therefore significantly contribute towards understanding of the disease epidemiology, however most conventional approaches to trace WMW migrations are based on capturing, tagging (mostly ringing or GPS devices) and their re-capturing to link the departure and arrival places. Stable isotope ratios in metabolically inert tissues (feathers, beaks, claws) reflect the ratios present at the point of intake (drinking or feeding), thus enabling for tracing bird origins at stopover places. Molecular diagnostic platforms such as the polymerase chain reaction (PCR) enable for accurate detection of the AIVs in the feces of infected birds. Similar technologies (genetic sequencing) can be used to determine the bird species through DNA barcoding. Simple and easy collection of feather and fecal samples at the stopover places may generate a full information package on which species of WMW carries the AIVs (PCR+DNA barcoding on the feces), as well as the origin of these species (SI+DNA barcoding on the feathers). Therefore, such approaches enable for research on the epidemiology and the ecology of the AIVs in WMW using a non-invasive platform, which does not require capturing of WMW. This manuscript discusses the potentials of these approaches to monitor the AIVs in WMW. p>

Stable Isotopes to Trace Migratory Birds and to Identify Harmful Diseases - An Introductory Guide (Paperback, Softcover reprint... Stable Isotopes to Trace Migratory Birds and to Identify Harmful Diseases - An Introductory Guide (Paperback, Softcover reprint of the original 1st ed. 2016)
G.J. Viljoen, A.G. Luckins, I. Naletoski
R1,529 Discovery Miles 15 290 Ships in 18 - 22 working days

This manuscript discusses the potentials of the approaches as mentioned below to monitor the AIVs in WMW. Molecular diagnostic platforms enable for accurate detection of the AIVs in the feces of infected birds. Similar technologies can be used to determine the bird species through DNA barcoding, enabling non-invasive research on the epidemiology of the disease. Wild migratory waterfowl (WMW) play significant role in the transmission of avian influenza viruses (AIVs) on large distances. Understanding bird migrations may therefore significantly contribute towards understanding of the disease epidemiology, however most conventional approaches to trace WMW migrations are based on capturing, tagging (mostly ringing or GPS devices) and their re-capturing to link the departure and arrival places. Stable isotope ratios in metabolically inert tissues (feathers, beaks, claws) reflect the ratios present at the point of intake (drinking or feeding), thus enabling for tracing bird origins at stopover places. Molecular diagnostic platforms such as the polymerase chain reaction (PCR) enable for accurate detection of the AIVs in the feces of infected birds. Similar technologies (genetic sequencing) can be used to determine the bird species through DNA barcoding. Simple and easy collection of feather and fecal samples at the stopover places may generate a full information package on which species of WMW carries the AIVs (PCR+DNA barcoding on the feces), as well as the origin of these species (SI+DNA barcoding on the feathers). Therefore, such approaches enable for research on the epidemiology and the ecology of the AIVs in WMW using a non-invasive platform, which does not require capturing of WMW. This manuscript discusses the potentials of these approaches to monitor the AIVs in WMW. p>

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Cyber Security and Threats - Concepts…
Information Reso Management Association Hardcover R9,416 Discovery Miles 94 160
A Treatise On Infinitesimal Calculus…
Bartholomew Price Hardcover R1,197 Discovery Miles 11 970
An Account of the Manners and Customs of…
Edward William Lane Paperback R644 Discovery Miles 6 440
Combinatorial Methods - Free Groups…
Vladimir Shpilrain, Alexander Mikhalev, … Hardcover R1,446 Discovery Miles 14 460
Hunt, Gather, Parent - What Ancient…
Michaeleen Doucleff Paperback R512 R390 Discovery Miles 3 900
The Lyre of Orpheus - Popular Music, the…
Christopher Partridge Hardcover R3,758 Discovery Miles 37 580
Haunted Miami Valley
Jennifer Eblin Paperback R478 R440 Discovery Miles 4 400
Computer Science Education in the 21st…
Tony Greening Hardcover R1,214 R1,017 Discovery Miles 10 170
The Man Made of Smoke
Alex North Paperback R395 R353 Discovery Miles 3 530
Wireless Public Safety Networks 2 - A…
Daniel Camara, Navid Nikaein Hardcover R2,677 Discovery Miles 26 770

 

Partners