Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 15 of 15 matches in All Departments
This book contains two contributions: "Combinatorial and Asymptotic Methods in Algebra" by V.A. Ufnarovskij is a survey of various combinatorial methods in infinite-dimensional algebras, widely interpreted to contain homological algebra and vigorously developing computer algebra, and narrowly interpreted as the study of algebraic objects defined by generators and their relations. The author shows how objects like words, graphs and automata provide valuable information in asymptotic studies. The main methods emply the notions of Grobner bases, generating functions, growth and those of homological algebra. Treated are also problems of relationships between different series, such as Hilbert, Poincare and Poincare-Betti series. Hyperbolic and quantum groups are also discussed. The reader does not need much of background material for he can find definitions and simple properties of the defined notions introduced along the way. "Non-Associative Structures" by E.N.Kuz'min and I.P.Shestakov surveys the modern state of the theory of non-associative structures that are nearly associative. Jordan, alternative, Malcev, and quasigroup algebras are discussed as well as applications of these structures in various areas of mathematics and primarily their relationship with the associative algebras. Quasigroups and loops are treated too. The survey is self-contained and complete with references to proofs in the literature. The book will be of great interest to graduate students and researchers in mathematics, computer science and theoretical physics."
This book, the first printing of which was published as volume 38 of the Encyclopaedia of Mathematical Sciences, presents a modern approach to homological algebra, based on the systematic use of the terminology and ideas of derived categories and derived functors. The book contains applications of homological algebra to the theory of sheaves on topological spaces, to Hodge theory, and to the theory of modules over rings of algebraic differential operators (algebraic D-modules). The authors Gelfand and Manin explain all the main ideas of the theory of derived categories. Both authors are well-known researchers and the second, Manin, is famous for his work in algebraic geometry and mathematical physics. The book is an excellent reference for graduate students and researchers in mathematics and also for physicists who use methods from algebraic geometry and algebraic topology.
Group theory is one of the most fundamental branches of mathematics. This volume of the Encyclopaedia is devoted to two important subjects within group theory. The first part of the book is concerned with infinite groups. The authors deal with combinatorial group theory, free constructions through group actions on trees, algorithmic problems, periodic groups and the Burnside problem, and the structure theory for Abelian, soluble and nilpotent groups. They have included the very latest developments; however, the material is accessible to readers familiar with the basic concepts of algebra. The second part treats the theory of linear groups. It is a genuinely encyclopaedic survey written for non-specialists. The topics covered includethe classical groups, algebraic groups, topological methods, conjugacy theorems, and finite linear groups. This book will be very useful to allmathematicians, physicists and other scientists including graduate students who use group theory in their work.
The first contribution by Carter covers the theory of finite groups of Lie type, an important field of current mathematical research. In the second part, Platonov and Yanchevskii survey the structure of finite-dimensional division algebras, including an account of reduced K-theory.
From the reviews: ..". [Gabriel and Roiter] are pioneers in this subject and they have included proofs for statements which in their opinions are elementary, those which will help further understanding and those which are scarcely available elsewhere. They attempt to take us up to the point where we can find our way in the original literature. ..." --The Mathematical Gazette
From the reviews: ..". The book under review consists of two monographs on geometric aspects of group theory ... Together, these two articles form a wide-ranging survey of combinatorial group theory, with emphasis very much on the geometric roots of the subject. This will be a useful reference work for the expert, as well as providing an overview of the subject for the outsider or novice. Many different topics are described and explored, with the main results presented but not proved. This allows the interested reader to get the flavour of these topics without becoming bogged down in detail. Both articles give comprehensive bibliographies, so that it is possible to use this book as the starting point for a more detailed study of a particular topic of interest. ..." Bulletin of the London Mathematical Society, 1996
Perhaps it is not inappropriate for me to begin with the comment that this book has been an interesting challenge to the translator. It is most unusual, in a text of this type, in that the style is racy, with many literary allusions and witticisms: not the easiest to translate, but a source of inspiration to continue through material that could daunt by its combinatorial complexity. Moreover, there have been many changes to the text during the translating period, reflecting the ferment that the subject of the restricted Burnside problem is passing through at present. I concur with Professor Kostrikin's "Note in Proof', where he describes the book as fortunate. I would put it slightly differently: its appearance has surely been partly instrumental in inspiring much endeavour, including such things as the paper of A. I. Adian and A. A. Razborov producing the first published recursive upper bound for the order of the universal finite group B(d,p) of prime exponent (the English version contains a different treatment of this result, due to E. I. Zel'manov); M. R. Vaughan-Lee's new approach to the subject; and finally, the crowning achievement of Zel'manov in establishing RBP for all prime-power exponents, thereby (via the classification theorem for finite simple groups and Hall-Higman) settling it for all exponents. The book is encyclopaedic in its coverage of facts and problems on RBP, and will continue to have an important influence in the area.
This book contains two contributions: "Combinatorial and Asymptotic Methods in Algebra" by V.A. Ufnarovskij is a survey of various combinatorial methods in infinite-dimensional algebras, widely interpreted to contain homological algebra and vigorously developing computer algebra, and narrowly interpreted as the study of algebraic objects defined by generators and their relations. The author shows how objects like words, graphs and automata provide valuable information in asymptotic studies. The main methods emply the notions of Grobner bases, generating functions, growth and those of homological algebra. Treated are also problems of relationships between different series, such as Hilbert, Poincare and Poincare-Betti series. Hyperbolic and quantum groups are also discussed. The reader does not need much of background material for he can find definitions and simple properties of the defined notions introduced along the way. "Non-Associative Structures" by E.N.Kuz'min and I.P.Shestakov surveys the modern state of the theory of non-associative structures that are nearly associative. Jordan, alternative, Malcev, and quasigroup algebras are discussed as well as applications of these structures in various areas of mathematics and primarily their relationship with the associative algebras. Quasigroups and loops are treated too. The survey is self-contained and complete with references to proofs in the literature. The book will be of great interest to graduate students and researchers in mathematics, computer science and theoretical physics."
The algebra of square matrices of size n ~ 2 over the field of complex numbers is, evidently, the best-known example of a non-commutative alge 1 bra * Subalgebras and subrings of this algebra (for example, the ring of n x n matrices with integral entries) arise naturally in many areas of mathemat ics. Historically however, the study of matrix algebras was preceded by the discovery of quatemions which, introduced in 1843 by Hamilton, found ap plications in the classical mechanics of the past century. Later it turned out that quaternion analysis had important applications in field theory. The al gebra of quaternions has become one of the classical mathematical objects; it is used, for instance, in algebra, geometry and topology. We will briefly focus on other examples of non-commutative rings and algebras which arise naturally in mathematics and in mathematical physics. The exterior algebra (or Grassmann algebra) is widely used in differential geometry - for example, in geometric theory of integration. Clifford algebras, which include exterior algebras as a special case, have applications in rep resentation theory and in algebraic topology. The Weyl algebra (Le. algebra of differential operators with* polynomial coefficients) often appears in the representation theory of Lie algebras. In recent years modules over the Weyl algebra and sheaves of such modules became the foundation of the so-called microlocal analysis. The theory of operator algebras (Le.
Group theory is one of the most fundamental branches of mathematics. This highly accessible volume of the Encyclopaedia is devoted to two important subjects within this theory. Extremely useful to all mathematicians, physicists and other scientists, including graduate students who use group theory in their work.
The first contribution by Carter covers the theory of finite groups of Lie type, an important field of current mathematical research. In the second part, Platonov and Yanchevskii survey the structure of finite-dimensional division algebras, including an account of reduced K-theory.
This book, the first printing of which was published as volume 38 of the Encyclopaedia of Mathematical Sciences, presents a modern approach to homological algebra, based on the systematic use of the terminology and ideas of derived categories and derived functors. The book contains applications of homological algebra to the theory of sheaves on topological spaces, to Hodge theory, and to the theory of modules over rings of algebraic differential operators (algebraic D-modules). The authors Gelfand and Manin explain all the main ideas of the theory of derived categories. Both authors are well-known researchers and the second, Manin, is famous for his work in algebraic geometry and mathematical physics. The book is an excellent reference for graduate students and researchers in mathematics and also for physicists who use methods from algebraic geometry and algebraic topology.
From the reviews: "... The book under review consists of two monographs on geometric aspects of group theory ... Together, these two articles form a wide-ranging survey of combinatorial group theory, with emphasis very much on the geometric roots of the subject. This will be a useful reference work for the expert, as well as providing an overview of the subject for the outsider or novice. Many different topics are described and explored, with the main results presented but not proved. This allows the interested reader to get the flavour of these topics without becoming bogged down in detail. Both articles give comprehensive bibliographies, so that it is possible to use this book as the starting point for a more detailed study of a particular topic of interest. ..." Bulletin of the London Mathematical Society, 1996
From the reviews:
This textbook, written by a dedicated and successful pedagogue who developed the present undergraduate algebra course at Moscow State University, differs in several respects from other algebra textbooks available in English. The book reflects the Soviet approach to teaching mathematics with its emphasis on applications and problem-solving -- note that the mathematics department in Moscow is called the I~echanics-Mathematics" Faculty. In the first place, Kostrikin's textbook motivates many of the algebraic concepts by practical examples, for instance, the heated plate problem used to introduce linear equations in Chapter 1. In the second place, there are a large number of exercises, so that the student can convert a vague passive understanding to active mastery of the new ideas. Thes~ problems are intended to be challenging but doable by the student; the harder ones have hints at the back of the book. This feature also makes the book ideally suited for learning algebra on one's own outside of the framework of an organized course. In the third place, the author treats material which is usually not part of an elementary course but which is fundamental in applications. Thus, Part II includes an introduction to the classical groups and to representation theory. With many American colleges now trying to bring their undergraduate mathematics curriculum closer to applications, it seems worthwhile to translate Soviet textbooks which reflect their greater experience in this area of mathematical pedagogy.
|
You may like...
How Did We Get Here? - A Girl's Guide to…
Mpoomy Ledwaba
Paperback
(1)
Twice The Glory - The Making Of The…
Lloyd Burnard, Khanyiso Tshwaku
Paperback
|