![]() |
![]() |
Your cart is empty |
||
Showing 1 - 6 of 6 matches in All Departments
I assume that you already know a good deal of microbiology. In this book, I frequently use the word "we" by which I mean "you and I." Together we are going to consider bacteriology from a broader perspective and we will think our way through the important biological problems that are frequently just skipped over in every microbiology course. My most important reason for writing this book is to make accessible the relevant thinking from fields of science other than microbiology that are important to microbiology. The book is written for people that have already have a fascination with bacteria, but can see that their background for understanding is far complete. This book consists of topics that are largely omitted from microbiology textbooks and includes some mathematics, physics, chemistry, and evolutionary biology. It contains a good deal of my own work, both experimental and theoretical, together with a lot of speculation. If ten times bigger, it would be a full text book on microbial physiology. A third of the microbial physiology is covered by the recent is no longer treated even in textbook by White (2000). Another third current specialized tests and is greatly underrepresented in text books.
Based on the author's more than 40 years experience, Bacterial Growth and Form examines such important questions as what bacteria were, what they are, and what they do. Particular emphasis is placed on the ability of bacteria to establish their shapes as they grow and divide. By developing an understanding of the properties of these simple and early life forms, especially at the levels of physics and mathematics, the book provides insight into the mechanism used by bacteria to subvert physical forces to their own ends. A major consideration of this work is that prokaryotes do many of the same things that eukaryotes do, but with simpler equipment employed in an extremely sophisticated way. The book illustrates this point by closely examining the basic mechanismof hydrostatic or turgor pressure: how it functions for many of the mechanical purposes in the prokaryote, how it leads to mechanisms for resisting turgor pressure, and how it ultimately led to the development of exoskeletons and endoskeletons, and to the refinement of bacteria. Bacterial Growth and Form brings together biochemical, biophysical, and physiological principles in an authoritative, single-source volume. It provides researchers, and students in biophysics and microbiology with an indispensible reference and a new perspective into the biology of life.
From the Chapman & Hall Microbiology Series this unique resource offers specific experimental and practical applications of mathematical modeling in microbial ecology. The text presents a variety of systems, ranging from subcellular systems to ecosystems, and shows how to test whether the models provide a good representation of the system. The book also encourages further development and application of modeling to burgeoning problems associated with microbial ecology, such as the pollution and destruction of pesticides and herbicides.
Based on the author's more than 40 years experience, Bacterial Growth and Form examines such important questions as what bacteria were, what they are, and what they do. Particular emphasis is placed on the ability of bacteria to establish their shapes as they grow and divide. By developing an understanding of the properties of these simple and early life forms, especially at the levels of physics and mathematics, the book provides insight into the mechanism used by bacteria to subvert physical forces to their own ends. A major consideration of this work is that prokaryotes do many of the same things that eukaryotes do, but with simpler equipment employed in an extremely sophisticated way. The book illustrates this point by closely examining the basic mechanismof hydrostatic or turgor pressure: how it functions for many of the mechanical purposes in the prokaryote, how it leads to mechanisms for resisting turgor pressure, and how it ultimately led to the development of exoskeletons and endoskeletons, and to the refinement of bacteria. Bacterial Growth and Form brings together biochemical, biophysical, and physiological principles in an authoritative, single-source volume. It provides researchers, and students in biophysics and microbiology with an indispensible reference and a new perspective into the biology of life.
I assume that you already know a good deal of microbiology. In this book, I frequently use the word "we" by which I mean "you and I." Together we are going to consider bacteriology from a broader perspective and we will think our way through the important biological problems that are frequently just skipped over in every microbiology course. My most important reason for writing this book is to make accessible the relevant thinking from fields of science other than microbiology that are important to microbiology. The book is written for people that have already have a fascination with bacteria, but can see that their background for understanding is far complete. This book consists of topics that are largely omitted from microbiology textbooks and includes some mathematics, physics, chemistry, and evolutionary biology. It contains a good deal of my own work, both experimental and theoretical, together with a lot of speculation. If ten times bigger, it would be a full text book on microbial physiology. A third of the microbial physiology is covered by the recent is no longer treated even in textbook by White (2000). Another third current specialized tests and is greatly underrepresented in text books.
From the Chapman & Hall Microbiology Series this unique resource offers specific experimental and practical applications of mathematical modeling in microbial ecology. The text presents a variety of systems, ranging from subcellular systems to ecosystems, and shows how to test whether the models provide a good representation of the system. The book also encourages further development and application of modeling to burgeoning problems associated with microbial ecology, such as the pollution and destruction of pesticides and herbicides.
|
![]() ![]() You may like...
Discovering Daniel - Finding Our Hope In…
Amir Tsarfati, Rick Yohn
Paperback
|