Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
Agreement assessment techniques are widely used in examining the acceptability of a new or generic process, methodology and/or formulation in areas of lab performance, instrument/assay validation or method comparisons, statistical process control, goodness-of-fit, and individual bioequivalence. Successful applications in these situations require a sound understanding of both the underlying theory and methodological advances in handling real-life problems. This book seeks to effectively blend theory and applications while presenting readers with many practical examples. For instance, in the medical device environment, it is important to know if the newly established lab can reproduce the instrument/assay results from the established but outdating lab. When there is a disagreement, it is important to differentiate the sources of disagreement. In addition to agreement coefficients, accuracy and precision coefficients are introduced and utilized to characterize these sources. This book will appeal to a broad range of statisticians, researchers, practitioners and students, in areas of biomedical devices, psychology, medical research, and others, in which agreement assessment are needed. Many practical illustrative examples will be presented throughout the book in a wide variety of situations for continuous and categorical data.
This is the first book on the subject since its introduction more than fifty years ago, and it can be used as a graduate text or as a reference work. It features all of the key results, many very useful tables, and a large number of research problems. The book will be of interest to those interested in one of the most fascinating areas of discrete mathematics, connected to statistics and coding theory, with applications to computer science and cryptography. It will be useful for anyone who is running experiments, whether in a chemistry lab or a manufacturing plant (trying to make those alloys stronger), or in agricultural or medical research. Sam Hedayat is Professor of Statistics and Senior Scholar in the Department of Mathematics, Statistics, and Computer Science, University of Illinois, Chicago. Neil J.A. Sloane is with AT&T Bell Labs (now AT&T Labs). John Stufken is Professor Statistics at Iowa State University.
Inference infinite sampling is a new development that is essential for the field of sampling. In addition to covering the majority of well known sampling plans and procedures, this study covers the important topics of superpopulation approach, randomized response, non-response and resampling techniques. The authors also provide extensive sets of problems ranging in difficulty, making this book beneficial to students.
Agreement assessment techniques are widely used in examining the acceptability of a new or generic process, methodology and/or formulation in areas of lab performance, instrument/assay validation or method comparisons, statistical process control, goodness-of-fit, and individual bioequivalence. Successful applications in these situations require a sound understanding of both the underlying theory and methodological advances in handling real-life problems. This book seeks to effectively blend theory and applications while presenting readers with many practical examples. For instance, in the medical device environment, it is important to know if the newly established lab can reproduce the instrument/assay results from the established but outdating lab. When there is a disagreement, it is important to differentiate the sources of disagreement. In addition to agreement coefficients, accuracy and precision coefficients are introduced and utilized to characterize these sources. This book will appeal to a broad range of statisticians, researchers, practitioners and students, in areas of biomedical devices, psychology, medical research, and others, in which agreement assessment are needed. Many practical illustrative examples will be presented throughout the book in a wide variety of situations for continuous and categorical data.
Orthogonal arrays have played a vital role in improving the quality of products manufactured throughout the world. This first book on the subject since its introduction more than fifty years ago serves as a key resource to this area of designing experiments. Most of the arrays obtained by the methods in this book are available electronically. Anyone running experiments - whether in a chemistry lab or a manufacturing plant, or in agricultural or medical research - will find this book useful.
|
You may like...
|