Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
Human Face Recognition Using Third-Order Synthetic Neural Networks explores the viability of the application of High-order synthetic neural network technology to transformation-invariant recognition of complex visual patterns. High-order networks require little training data (hence, short training times) and have been used to perform transformation-invariant recognition of relatively simple visual patterns, achieving very high recognition rates. The successful results of these methods provided inspiration to address more practical problems which have grayscale as opposed to binary patterns (e.g., alphanumeric characters, aircraft silhouettes) and are also more complex in nature as opposed to purely edge-extracted images - human face recognition is such a problem. Human Face Recognition Using Third-Order Synthetic Neural Networks serves as an excellent reference for researchers and professionals working on applying neural network technology to the recognition of complex visual patterns.
The addition of artificial neural network computing to traditional pattern recognition has given rise to a new, different, and more powerful methodology that is presented in this interesting book. This is a practical guide to the application of artificial neural networks. Geared toward the practitioner, Pattern Recognition with Neural Networks in C++ covers pattern classification and neural network approaches within the same framework. Through the book's presentation of underlying theory and numerous practical examples, readers gain an understanding that will allow them to make judicious design choices rendering neural application predictable and effective. The book provides an intuitive explanation of each method for each network paradigm. This discussion is supported by a rigorous mathematical approach where necessary. C++ has emerged as a rich and descriptive means by which concepts, models, or algorithms can be precisely described. For many of the neural network models discussed, C++ programs are presented for the actual implementation. Pictorial diagrams and in-depth discussions explain each topic. Necessary derivative steps for the mathematical models are included so that readers can incorporate new ideas into their programs as the field advances with new developments. For each approach, the authors clearly state the known theoretical results, the known tendencies of the approach, and their recommendations for getting the best results from the method. The material covered in the book is accessible to working engineers with little or no explicit background in neural networks. However, the material is presented in sufficient depth so that those with prior knowledge will find this book beneficial. Pattern Recognition with Neural Networks in C++ is also suitable for courses in neural networks at an advanced undergraduate or graduate level. This book is valuable for academic as well as practical research.
The addition of artificial neural network computing to traditional
pattern recognition has given rise to a new, different, and more
powerful methodology that is presented in this interesting book.
This is a practical guide to the application of artificial neural
networks.
Human Face Recognition Using Third-Order Synthetic Neural Networks explores the viability of the application of High-order synthetic neural network technology to transformation-invariant recognition of complex visual patterns. High-order networks require little training data (hence, short training times) and have been used to perform transformation-invariant recognition of relatively simple visual patterns, achieving very high recognition rates. The successful results of these methods provided inspiration to address more practical problems which have grayscale as opposed to binary patterns (e.g., alphanumeric characters, aircraft silhouettes) and are also more complex in nature as opposed to purely edge-extracted images - human face recognition is such a problem. Human Face Recognition Using Third-Order Synthetic Neural Networks serves as an excellent reference for researchers and professionals working on applying neural network technology to the recognition of complex visual patterns.
|
You may like...
|