Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
The Likelihood plays a key role in both introducing general notions of statistical theory, and in developing specific methods. This book introduces likelihood-based statistical theory and related methods from a classical viewpoint, and demonstrates how the main body of currently used statistical techniques can be generated from a few key concepts, in particular the likelihood. Focusing on those methods, which have both a solid theoretical background and practical relevance, the author gives formal justification of the methods used and provides numerical examples with real data.
An introduction to statistical data mining, Data Analysis and Data Mining is both textbook and professional resource. Assuming only a basic knowledge of statistical reasoning, it presents core concepts in data mining and exploratory statistical models to students and professional statisticians-both those working in communications and those working in a technological or scientific capacity-who have a limited knowledge of data mining. This book presents key statistical concepts by way of case studies, giving readers the benefit of learning from real problems and real data. Aided by a diverse range of statistical methods and techniques, readers will move from simple problems to complex problems. Through these case studies, authors Adelchi Azzalini and Bruno Scarpa explain exactly how statistical methods work; rather than relying on the "push the button" philosophy, they demonstrate how to use statistical tools to find the best solution to any given problem. Case studies feature current topics highly relevant to data mining, such web page traffic; the segmentation of customers; selection of customers for direct mail commercial campaigns; fraud detection; and measurements of customer satisfaction. Appropriate for both advanced undergraduate and graduate students, this much-needed book will fill a gap between higher level books, which emphasize technical explanations, and lower level books, which assume no prior knowledge and do not explain the methodology behind the statistical operations.
Interest in the skew-normal and related families of distributions has grown enormously over recent years, as theory has advanced, challenges of data have grown, and computational tools have made substantial progress. This comprehensive treatment, blending theory and practice, will be the standard resource for statisticians and applied researchers. Assuming only basic knowledge of (non-measure-theoretic) probability and statistical inference, the book is accessible to the wide range of researchers who use statistical modelling techniques. Guiding readers through the main concepts and results, it covers both the probability and the statistics sides of the subject, in the univariate and multivariate settings. The theoretical development is complemented by numerous illustrations and applications to a range of fields including quantitative finance, medical statistics, environmental risk studies, and industrial and business efficiency. The author's freely available R package sn, available from CRAN, equips readers to put the methods into action with their own data.
The Likelihood plays a key role in both introducing general notions of statistical theory, and in developing specific methods. This book introduces likelihood-based statistical theory and related methods from a classical viewpoint, and demonstrates how the main body of currently used statistical techniques can be generated from a few key concepts, in particular the likelihood.
The book describes the use of smoothing techniques in statistics, including both density estimation and nonparametric regression. Considerable advances in research in this area have been made in recent years. The aim of this text is to describe a variety of ways in which these methods can be applied to practical problems in statistics. The role of smoothing techniques in exploring data graphically is emphasized, but the use of nonparametric curves in drawing conclusions from data, as an extension of more standard parametric models, is also a major focus of the book. Examples are drawn from a wide range of applications. The book is intended for those who seek an introduction to the area, with an emphasis on applications rather than on detailed theory. It is therefore expected that the book will benefit those attending courses at an advanced undergraduate, or postgraduate, level, as well as researchers, both from statistics and from other disciplines, who wish to learn about and apply these techniques in practical data analysis. The text makes extensive reference to S-Plus, as a computing environment in which examples can be explored. S-Plus functions and example scripts are provided to implement many of the techniques described. These parts are, however, clearly separate from the main body of text, and can therefore easily be skipped by readers not interested in S-Plus.
Interest in the skew-normal and related families of distributions has grown enormously over recent years, as theory has advanced, challenges of data have grown, and computational tools have made substantial progress. This comprehensive treatment, blending theory and practice, will be the standard resource for statisticians and applied researchers. Assuming only basic knowledge of (non-measure-theoretic) probability and statistical inference, the book is accessible to the wide range of researchers who use statistical modelling techniques. Guiding readers through the main concepts and results, it covers both the probability and the statistics sides of the subject, in the univariate and multivariate settings. The theoretical development is complemented by numerous illustrations and applications to a range of fields including quantitative finance, medical statistics, environmental risk studies, and industrial and business efficiency. The author's freely available R package sn, available from CRAN, equips readers to put the methods into action with their own data.
|
You may like...
|