Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 7 of 7 matches in All Departments
Advanced Sensor Technology: Biomedical, Environmental, and Construction Applications introduces readers to the past, present and future of sensor technology and its emerging applications in a wide variety of different fields. Organized in five parts, the book covers historical context and future outlook of sensor technology development and emerging applications, the use of sensors throughout many applications in healthcare, health and life science research, public health and safety, discusses chemical sensors used in environmental monitoring and remediation of contaminants, highlights the use of sensors in food, agriculture, fire prevention, automotive and robotics, and more. Final sections look forward at the challenges that must be overcome in the development and use of sensing technology as well as their commercial use, making this book appropriate for the interdisciplinary community of researchers and practitioners interested in the development of sensor technologies.
Bionanotechnology: Emerging Applications of Bionanomaterials highlights a wide range of industrial applications using bionanotechnologies, with biomedical applications prominent amongst these, including drug delivery, tissue engineering, wound healing, medical implants, medical diagnostics and therapy. Other key areas include energy harvesting and storage, water/waste treatment, papermaking, textiles, construction industry, automotive, aerospace. This book is a valuable resource for all those seeking to gain a fundamental understanding of how bionanomaterials are used in a variety of industry sectors. Bionanomaterials are molecular materials composed partially or completely of biological molecules - such as proteins, enzymes, viruses, DNA and biopolymers - as well as metal, metal oxides, and carbon nanomaterials. Bionanomaterials have drawn much attention for their use in a wide range of industrial applications, including scaffolds, dental implants, drug delivery, dialysis, biobatteries, biofuel cells, air purification, and water treatment.
Bionanomaterials are identified as a perfect replacement, in the quest for the search of an alternative to toxic conventional nanomaterials for biomedical applications. Bionanomaterials are the nanomaterials, that are fabricated via biomolecules or encapsulate or immobilize a conventional nanomaterial with a biomolecule. The biomolecules extracted from the microbes, plants, agricultural wastes, insects, marine organisms and certain animals are used for the formation of bionanomaterials. These bionanomaterials exhibited low or negligible toxicity towards humans, other organisms and the environment with enhanced biocompatibility, bioavailability and bioreactivity. Thus, the aim of this book is to provide an overview of various bionanomaterials, their synthesis, characterization and their application-oriented properties. The book is divided into two parts - Part 1 discusses about the bionanomaterials of exclusive natural origin, self-assembled bionanomaterials and their environmental application and Part 2 focuses on applications of distinct bionanomaterials in biomedical sciences. The 'Chapter 1 - Bionanomaterials: Definitions, sources, types, properties, market, toxicity and regulations' aims to provide an extensive overview of bionanomaterials, their definitions, sources, types and their properties. In addition, the toxicity of bionanomaterials and their regulations implied in recent times were also discussed. 'Chapter 2 - Nature inspired bionanomaterials' highlights different types of nature-inspired biosynthesized nanomaterials and their green synthesis methods, as well as some of their emerging applications, especially in the fields of nanomedicine, cosmetics, drug delivery, molecular imaging, and catalytic precursors. Further, the chapter also covers different types of bionanomaterials (e.g., viruses, protein cages, and phages) and highlights their unique properties and potential applications. 'Chapter 3 - Culinary spices mediated biogenesis of nanoparticles for cancer and diabetes treatment' deals with bionanomaterials synthesized by using extracts of culinary spices and its vital role in the treatment of distinct types of cancer and diabetes. In 'Chapter 4 - Environment friendly superhydrophobic bioactive nanocoatings', the authors have discussed the basics of exceptional water repellence behaviour and recent developments in the area of bioactive-SHC for various applications. In addition, the current and projected requirements for bioactive-SHC were also addressed. The authors of 'Chapter 5 - Self-assembly of nanobionics: from theory to application' reviewed, discussed, addressed and highlighted the recent advancements in bionics as an interdisciplinary field to understand the bionic materials and particles, that are mainly fabricated via self-assembly approach. In part 2, the 'Chapter 6 - Inorganic bionanomaterials for biomedical applications' provides an overview of inorganic bionanomaterials, its distinct types, synthesis procedures, properties and characteristics, which is essential for desired applications. 'Chapter 7 - Polymer nanomaterials for biomedical applications' is a comprehensive review of various polymer nanocomposite types, and further describes the synthesis, preparation, structure and biomedical application of nanocomposites. In addition, the recent developments in the field of polymer nanocomposites for biomedical applications were also discussed. 'Chapter 8 - Lignin nanoparticles and their biomedical applications' aims in highlighting the current trends in lignin nanoparticle depolymerization approach, focusing on microbial lignin degradation, optimization, and its biomedical applications. The authors of 'Chapter 9 - Polymer-based nanomaterials for targeted drug delivery' addressed the use of polymeric bionanomaterials, including hydrogels, electrospun nanofibrous scaffolds, nanocellulose, and carbohydrate nanocarriers with special emphasis to their material properties, fabrication technologies and applicability in specific targeted anatomical sites. Moreover, 'Chapter 10 - Cationic nanoparticles for treatment of neurological diseases' discusses about brain disorders, the role of nutraceuticals, mechanisms, delivery challenges, as well as formulation techniques and prospects of cationic nanoparticles in the therapeutic management of neuronal disorders, i.e., brain as site of drug target. Besides, 'Chapter 11 - Carbon nanomaterials for therapeutic applications' has highlighted the cutting-edge properties, mechanism of action, and advancements of carbon nanomaterials as drug delivery system in various diseases, such as cancer and inflammatory disorders. Further, the chapter also sheds light on the potential challenges, limitations, and future outlook for improving and growing carbon-based bionanomaterials. The final chapter 'Chapter 12 - Liposomal bionanomaterials for nucleic acid delivery' is a brief summary of various nucleic acid-based cationic liposomes as a potential bionanomaterial and its recent progress in the application of therapeutic nucleic acid delivery. We hope that this book will enlighten undergraduates, graduates, and industrial as well as academic researchers on the synthesis, characterization and property-oriented applications of certain exclusive bionanomaterials.
Emerging Applications of Nanoparticles and Architecture Nanostructures: Current Prospects and Future Trends discusses the most important current applications of nanoparticles and architecture nanostructures in a comprehensive, detailed manner. The book covers major applications of nanoparticles and architecture nanostructures, taking into account their unusual shapes and high surface areas. In particular, coverage is given to applications in aerospace, automotive, batteries, sensors, smart textile design, energy conversion, color imaging, printing, computer chips, medical implants, pharmacy, cosmetics, and more. In addition, the book discusses the future of research in these areas. This is a valuable reference for both materials scientists, chemical and mechanical engineers working both in R&D and academia who want to learn more on how nanoparticles and nanomaterials are commercially applied.
Functionalized Nanofibers: Synthesis and Industrial Applications presents the latest advances in the fabrication, design, processing, and properties of functionalized nanofibers for a range of advanced applications. Sections introduce fabrication, mechanisms, and design of functionalized nanofibers, explaining electrospinning and non-electrospinning techniques, optimization of structural designs, surface functionalization techniques, and characterization methods. Subsequent sections focus on specific application areas, highlighting preparation methods and applications of functionalized nanofibers across biomedicine, surfaces and coatings, food, environment, energy, electronics, and textiles. Finally, environmental impact and safety and legal aspects related to the utilization of functionalized nanofibers are considered. This is a valuable resource for researchers and advanced students with an interest in nanomaterials and nanotechnology, and across other disciplines such as polymer science, chemistry, chemical engineering, and materials science and engineering.
Fundamentals of Sensor Technology: Principles and Novel Designs presents an important reference on the materials, platforms, characterization and fabrication methods used in the development of chemical sensor technologies. Sections provide the historical context of sensor technology development, review principles for the design of sensing devices and circuits, delve into the most common chemical and biological sensor types, cover unique properties and performance requirements, discuss fabrication techniques, including defining critical parameters, modeling and simulation strategies, and present important materials categories used in sensing applications, such as nanomaterials, quantum dots, magnetic materials, and more. This book is appropriate for the interdisciplinary community of researchers and practitioners interested in the development of sensor technologies, including materials scientists and engineers, analytical chemists and other related disciplines.
Fundamentals of Nanoparticles: Classifications, Synthesis Methods, Properties and Characterization explores the nanoparticles and architecture of nanostructured materials being used today in a comprehensive, detailed manner. This book focuses primarily on the characterization, properties and synthesis of nanoscale materials, and is divided into three major parts. This is a valuable reference for materials scientists, and chemical and mechanical engineers working in R&D and academia, who want to learn more about how nanoparticles and nanomaterials are characterized and engineered. Part one covers nanoparticles formation, self-assembly in the architecture nanostructures, types and classifications of nanoparticles, and signature physical and chemical properties, toxicity and regulations. Part two presents different ways to form nanometer particles, including bottom-up and top-down approaches, the classical and non-classical theories of nanoparticles formation and self-assembly, surface functionalization and other surface treatments to allow practical use. Part three covers characterization of nanoparticles and nanostructured materials, including the determination of size and shape, in addition to atomic and electronic structures and other important properties.
|
You may like...
Whole Systems Design - Inquiries in the…
Diana Claire Douglas
Hardcover
|