Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
Transient events are short-lived bursts of energy in a system resulting from a sudden change of the state. They can be caused by faults, switching events or sudden changes in generation and load. Given the need to expand HV cable grids and to interconnect national grids to increase grid flexibility, the effects of such transients need to be understood in order to maintain the security of power supply and power quality. This book presents an overview of formulas to model transients in cable systems based on complete solutions of Maxwell's equations. It presents solutions to particularly model important high frequency phenomena. The impedance and admittance at a very low frequency for HVDC systems are investigated. In addition, the modeling methods of underground cables created in the Electromagnetic Transients Program (EMTP) are described. Moreover, the wave propagation characteristics of overhead lines and underground cables, and steady-state and transient behaviour of three-phase cables are further investigated in this book. Finally, transients in large interconnected HV cable networks in Denmark and the Netherlands are presented as case studies. Electromagnetic Transients in Large HV Cable Networks enables researchers, HV system manufacturers and grid operators to model, simulate and analyse transient phenomena in large HV cable systems and to create solutions to counter and mitigate them.
This new edition covers a wide area from transients in power systems-including the basic theory, analytical calculations, EMTP simulations, computations by numerical electromagnetic analysis methods, and field test results-to electromagnetic disturbances in the field on EMC and control engineering. Not only does it show how a transient on a single-phase line can be explained from a physical viewpoint, but it then explains how it can be solved analytically by an electric circuit theory. Approximate formulas, which can be calculated by a pocket calculator, are presented so that a transient can be analytically evaluated by a simple hand calculation. Since a real power line is three-phase, this book includes a theory that deals with a multi-phase line for practical application. In addition, methods for tackling a real transient in a power system are introduced. This new edition contains three completely revised and updated chapters, as well as two new chapters on grounding and numerical methods.
This new edition covers a wide area from transients in power systems-including the basic theory, analytical calculations, EMTP simulations, computations by numerical electromagnetic analysis methods, and field test results-to electromagnetic disturbances in the field on EMC and control engineering. Not only does it show how a transient on a single-phase line can be explained from a physical viewpoint, but it then explains how it can be solved analytically by an electric circuit theory. Approximate formulas, which can be calculated by a pocket calculator, are presented so that a transient can be analytically evaluated by a simple hand calculation. Since a real power line is three-phase, this book includes a theory that deals with a multi-phase line for practical application. In addition, methods for tackling a real transient in a power system are introduced. This new edition contains three completely revised and updated chapters, as well as two new chapters on grounding and numerical methods.
This book describes the three major power system transients and dynamics simulation tools based on a circuit-theory approach that are widely used all over the world (EMTP-ATP, EMTP-RV and EMTDC/PSCAD), together with other powerful simulation tools such as XTAP. In the first part of the book, the basics of circuit-theory based simulation tools and of numerical electromagnetic analysis methods are explained, various simulation tools are introduced and the features, strengths and weaknesses are described together with some application examples. In the second part, various transient and dynamic phenomena in power systems are investigated and studied by applying the numerical analysis tools, including: transients in various components related to a renewable system; surges on wind farm and collection systems; protective devices such as fault locators and high-speed switchgear; overvoltages in a power system; dynamic phenomena in FACTS, especially STATCOM (Static Synchronous Compensator); the application of SVC to a cable system; and grounding systems. Combining underlying theory with real-world examples, this book will be of use to researchers involved in analysis of power systems for development and optimization, and professionals and advanced students working with power systems in general.
|
You may like...
We Were Perfect Parents Until We Had…
Vanessa Raphaely, Karin Schimke
Paperback
|