![]() |
![]() |
Your cart is empty |
||
Showing 1 - 6 of 6 matches in All Departments
The assembly sector is one of the least automated in the manufacturing industry. Automation is essential if industrial companies are to be competitive in the future. In assembly, an integrated and flexible approach is needed because 75% of the applications are produced in small and medium batches. The methodologies developed in this book deal with the integration of the assembly process from the initial design of the product to its production. In such an integrated system, assembly planning is one of the most important features. A well-chosen assembly plan will reduce both the number of tool changes and the fixtures within the assembly cell. It will prevent the handling of unstable subassemblies, simplify the design of the robot grippers and reduce production costs. An automatic generator of assembly sequences can be an efficient aid to the designer. Whenever he or she modifies features of the product, the influence of these modifications can immediately be checked on the sequences. For small batch production, the automatic generation of assembly sequences is faster, more reliable and more cost-effective than manual generation. By using this latter method interesting sequences could be missed because of the combinatorial explosion of solutions. The main subjects treated in this book are as follows. 1. Presentation and classification of existing systems of automatic generation of assembly sequences. Automatic assembly planning is, indeed, a very recent research area and, in my experience, no systematic study has been carried out up to now.
Efficient assembly line design is a problem of considerable industrial importance. Unfortunately, like many other design processes, it can be time-consuming and repetitive. In addition to this, assembly line design is often complex owing to the number of multiple components involved: line efficiency, cost, reliability and space for example. The main objective is to integrate the design with operations issues, thereby minimising its costs. Since it is impossible to replace a designera (TM)s intelligence, experience and creativity, it is important to provide him with a set of assistance tools in order to meet the conflicting objectives involved. Assembly Line Design presents three techniques based on the Grouping Genetic Algorithm (a powerful and broadly applicable optimisation and stochastic search technique) which can be used to aid efficient assembly line design: a [ a ~equal piles for assembly linesa (TM), a new algorithm introduced to deal with assembly line balancing (balancing stationsa (TM) loads); a [ a new method based on a multiple objective grouping genetic algorithm (MO-GGA) aiming to deal with resource planning (selection of equipment to carry out assembly tasks); a ~a [ balance for operationa (TM) (BFO), introduced to deal with the changes during the operation phase of assembly lines. Assembly Line Design will be of interest to technical personnel working in design, planning and production departments in industry as well as managers in industry who want to learn more about concurrent engineering. This book will also be of value to researchers and postgraduate students in mechanical, manufacturing or micro-engineering.
Integrated Design of a Product Family and Its Assembly System presents an integrated approach for the design of a product family and its assembly system, whose main principles consider the product family as a fictitious unique product for which the assembly system is to be devised. It imposes assembly and operation constraints as late as possible in the design process to get liberties in the system design, and adapts the product family at each design stage to integrate the new constraints related to the successive design choices. Integrated Design of a Product Family and Its Assembly System is an important, must-have book for researchers and Ph.D. students in Computer-Integrated Manufacturing, Mechanical Engineering, and Manufacturing, as well as practitioners in the Design, Planning and Production departments in the manufacturing industry. Integrated Design of a Product Family and Its Assembly System is also suitable for use as a textbook in courses such as Computer-Aided Design, Concurrent Engineering, Design for Assembly, Process Planning, and Integrated Design.
The assembly sector is one of the least automated in the manufacturing industry. Automation is essential if industrial companies are to be competitive in the future. In assembly, an integrated and flexible approach is needed because 75% of the applications are produced in small and medium batches. The methodologies developed in this book deal with the integration of the assembly process from the initial design of the product to its production. In such an integrated system, assembly planning is one of the most important features. A well-chosen assembly plan will reduce both the number of tool changes and the fixtures within the assembly cell. It will prevent the handling of unstable subassemblies, simplify the design of the robot grippers and reduce production costs. An automatic generator of assembly sequences can be an efficient aid to the designer. Whenever he or she modifies features of the product, the influence of these modifications can immediately be checked on the sequences. For small batch production, the automatic generation of assembly sequences is faster, more reliable and more cost-effective than manual generation. By using this latter method interesting sequences could be missed because of the combinatorial explosion of solutions. The main subjects treated in this book are as follows. 1. Presentation and classification of existing systems of automatic generation of assembly sequences. Automatic assembly planning is, indeed, a very recent research area and, in my experience, no systematic study has been carried out up to now.
Efficient assembly line design is a problem of considerable industrial importance. Assembly Line Design will be bought by technical personnel working in design, planning and production departments in industry as well as managers in industry who want to learn more about concurrent engineering. This book will also be purchased by researchers and postgraduate students in mechanical, manufacturing or micro-engineering.
The last two decades have witnessed important shifts in customers' behaviour. Companies now need to integrate customers in their strategies and manufacturers have to propose a large variety of products to meet the market's demand. Increasing the range of PVs attracts and retains customers, yet it dramatically augments the cost and complexity of the manufacturing systems. As many decisions taken at the design stage of the product are decisive for its entire life, it is crucial to integrate the process and the assembly system when designing the product. Integrated Design of a Product Family and Its Assembly System
presents an integrated approach for the design of a product family
and its assembly system, whose main principles consider the product
family as a fictitious unique product for which the assembly system
is to be devised. It imposes assembly and operation constraints as
late as possible in the design process to get liberties in the
system design, and adapts the product family at each design stage
to integrate the new constraints related to the successive design
choices.
|
![]() ![]() You may like...
|