Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 13 of 13 matches in All Departments
Basic Multivariable Calculus fills the need for a student-oriented text devoted exclusively to the third-semester course in multivariable calculus. In this text, the basic algebraic, analytic, and geometric concepts of multivariable and vector calculus are carefully explained, with an emphasis on developing the student's intuitive understanding and computational technique. A wealth of figures supports geometrical interpretation, while exercise sets, review sections, practice exams, and historical notes keep the students active in, and involved with, the mathematical ideas. All necessary linear algebra is developed within the text, and the material can be readily coordinated with computer laboratories. Basic Multivariable Calculus is the product of an extensive writing, revising, and class-testing collaboration by the authors of Calculus III (Springer-Verlag) and Vector Calculus (W.H. Freeman & Co.). Incorporating many features from these highly respected texts, it is both a synthesis of the authors' previous work and a new and original textbook.
This volume is dedicated to the memory of Shoshichi Kobayashi, and gathers contributions from distinguished researchers working on topics close to his research areas. The book is organized into three parts, with the first part presenting an overview of Professor Shoshichi Kobayashi's career. This is followed by two expository course lectures (the second part) on recent topics in extremal Kahler metrics and value distribution theory, which will be helpful for graduate students in mathematics interested in new topics in complex geometry and complex analysis. Lastly, the third part of the volume collects authoritative research papers on differential geometry and complex analysis. Professor Shoshichi Kobayashi was a recognized international leader in the areas of differential and complex geometry. He contributed crucial ideas that are still considered fundamental in these fields. The book will be of interest to researchers in the fields of differential geometry, complex geometry, and several complex variables geometry, as well as to graduate students in mathematics.
Andreas Floer died on May 15, 1991 an untimely and tragic death. His visions and far-reaching contributions have significantly influenced the developments of mathematics. His main interests centered on the fields of dynamical systems, symplectic geometry, Yang-Mills theory and low dimensional topology. Motivated by the global existence problem of periodic solutions for Hamiltonian systems and starting from ideas of Conley, Gromov and Witten, he developed his Floer homology, providing new, powerful methods which can be applied to problems inaccessible only a few years ago. This volume opens with a short biography and three hitherto unpublished papers of Andreas Floer. It then presents a collection of invited contributions, and survey articles as well as research papers on his fields of interest, bearing testimony of the high esteem and appreciation this brilliant mathematician enjoyed among his colleagues. Authors include: A. Floer, V.I. Arnold, M. Atiyah, M. Audin, D.M. Austin, S.M. Bates, P.J. Braam, M. Chaperon, R.L. Cohen, G. Dell' Antonio, S.K. Donaldson, B. D'Onofrio, I. Ekeland, Y. Eliashberg, K.D. Ernst, R. Finthushel, A.B. Givental, H. Hofer, J.D.S. Jones, I. McAllister, D. McDuff, Y.-G. Oh, L. Polterovich, D.A. Salamon, G.B. Segal, R. Stern, C.H. Taubes, C. Viterbo, A. Weinstein, E. Witten, E. Zehnder
This volume aims to acknowledge J. E. Marsden's influence as a teacher, propagator of new ideas, and mentor of young talent. It presents both survey articles and research articles in the fields that represent the main themes of his work, including elesticity and analysis, fluid mechanics, dynamical systems theory, geometric mechanics, geometric control theory, and relativity and quantum mechanics. The common thread throughout is the use of geometric methods that serve to unify diverse disciplines and bring a wide variety of scientists and mathematicians together in a way that enhances dialogue and encourages cooperation. This book may serve as a guide to rapidly evolving areas as well as a resource both for students who want to work in one of these fields and practitioners who seek a broader view.
While Applying Social Statistics is "about" social statistics and includes all of the topics generally covered in similar texts, it is first and foremost a book about how sociologists use statistics. Its emphasis is on statistical reasoning in sociology and on showing how these principles can be applied to numerous problems in a wide variety of contexts; to answer effectively the question "what's it for." A main learning objective is to help students understand how and why social statistics is used. Yet, Weinstein's style and substance recognize that it is of equal-or even greater-importance that they begin to learn how to apply these principles and techniques themselves.
This volume is dedicated to the memory of Shoshichi Kobayashi, and gathers contributions from distinguished researchers working on topics close to his research areas. The book is organized into three parts, with the first part presenting an overview of Professor Shoshichi Kobayashi's career. This is followed by two expository course lectures (the second part) on recent topics in extremal Kahler metrics and value distribution theory, which will be helpful for graduate students in mathematics interested in new topics in complex geometry and complex analysis. Lastly, the third part of the volume collects authoritative research papers on differential geometry and complex analysis. Professor Shoshichi Kobayashi was a recognized international leader in the areas of differential and complex geometry. He contributed crucial ideas that are still considered fundamental in these fields. The book will be of interest to researchers in the fields of differential geometry, complex geometry, and several complex variables geometry, as well as to graduate students in mathematics.
The papers in this volume are based on lectures given during the meeting of the Seminaire Sud Rhodanien de Geometrie which we organized at MSRI from May 22 to June 2, 1989, as part of a year-long program on Symplectic Geometry and Mechanics. The Seminaire Sud Rhodanien de Geometrie (SSRG) was established in 1982 by geometers and mathematical physicists at the Universities of Avignon, Lyon, Marseille, and Montpellier, with the aim of developing and coordinating research in symplectic geometry and its applications to analysis and mathematical physics. It has been designated by the Centre N ationale de la Recherche Scientifique as a "Groupement de Recherche" (G.D.R. 144), centered at the Universite Claude Bernard (Lyon I). From the beginning, the SSRG has involved the cooperation of colleagues from other universities inside and outside France; in addition to the editors of this volume, its Scientific Committee consists of D. Bennequin, P. Libermann, A. Lichnerowicz, C.-M. MarIe, J.-M. Morvan, P. Molino, and J.-M. Souriau. In particular, there have always been strong connections with the University of California at Berkeley, making this other "UCB" into a virtual fifth pole of the SSRG. Through its international meetings, of which the first five were held at Lyon, Montpellier, and Marseille, the SSRG has become an important cen ter of exchange for the latest developments in symplectic geometry and its applications. It seemed natural, therefore, to have this sixth meeting at MSRI in Berkeley in conjunction with the "symplectic year" 1988-89."
Andreas Floer died on May 15, 1991 an untimely and tragic death. His visions and far-reaching contributions have significantly influenced the developments of mathematics. His main interests centered on the fields of dynamical systems, symplectic geometry, Yang-Mills theory and low dimensional topology. Motivated by the global existence problem of periodic solutions for Hamiltonian systems and starting from ideas of Conley, Gromov and Witten, he developed his Floer homology, providing new, powerful methods which can be applied to problems inaccessible only a few years ago. This volume opens with a short biography and three hitherto unpublished papers of Andreas Floer. It then presents a collection of invited contributions, and survey articles as well as research papers on his fields of interest, bearing testimony of the high esteem and appreciation this brilliant mathematician enjoyed among his colleagues. Authors include: A. Floer, V.I. Arnold, M. Atiyah, M. Audin, D.M. Austin, S.M. Bates, P.J. Braam, M. Chaperon, R.L. Cohen, G. Dell' Antonio, S.K. Donaldson, B. D'Onofrio, I. Ekeland, Y. Eliashberg, K.D. Ernst, R. Finthushel, A.B. Givental, H. Hofer, J.D.S. Jones, I. McAllister, D. McDuff, Y.-G. Oh, L. Polterovich, D.A. Salamon, G.B. Segal, R. Stern, C.H. Taubes, C. Viterbo, A. Weinstein, E. Witten, E. Zehnder
Jerry Marsden, one of the world's pre-eminent mechanicians and applied mathematicians, celebrated his 60th birthday in August 2002. The event was marked by a workshop on "Geometry, Mechanics, and Dynamics"at the Fields Institute for Research in the Mathematical Sciences, of which he wasthefoundingDirector. Ratherthanmerelyproduceaconventionalp- ceedings, with relatively brief accounts of research and technical advances presented at the meeting, we wished to acknowledge Jerry's in?uence as a teacher, a propagator of new ideas, and a mentor of young talent. Con- quently, starting in 1999, we sought to collect articles that might be used as entry points by students interested in ?elds that have been shaped by Jerry's work. At the same time we hoped to give experts engrossed in their own technical niches an indication of the wonderful breadth and depth of their subjects as a whole. This book is an outcome of the e?orts of those who accepted our in- tations to contribute. It presents both survey and research articles in the several ?elds that represent the main themes of Jerry's work, including elasticity and analysis, ?uid mechanics, dynamical systems theory, g- metric mechanics, geometric control theory, and relativity and quantum mechanics. The common thread running through this broad tapestry is the use of geometric methods that serve to unify diverse disciplines and bring a widevarietyofscientistsandmathematicianstogether, speakingalanguage which enhances dialogue and encourages cross-fertilization.
While Applying Social Statistics is 'about' social statistics and includes all of the topics generally covered in similar texts, it is first and foremost a book about how sociologists use statistics. Its emphasis is on statistical reasoning in sociology and on showing how these principles can be applied to numerous problems in a wide variety of contexts; to answer effectively the question 'what's it for.' A main learning objective is to help students understand how and why social statistics is used. Yet, Weinstein's style and substance recognize that it is of equal-or even greater-importance that they begin to learn how to apply these principles and techniques themselves.
The second of a three-volume work, this is the result of the authors'experience teaching calculus at Berkeley. The book covers techniques and applications of integration, infinite series, and differential equations, the whole time motivating the study of calculus using its applications. The authors include numerous solved problems, as well as extensive exercises at the end of each section. In addition, a separate student guide has been prepared.
This book, the third of a three-volume work, is the outgrowth of the authors' experience teaching calculus at Berkeley. It is concerned with multivariable calculus, and begins with the necessary material from analytical geometry. It goes on to cover partial differention, the gradient and its applications, multiple integration, and the theorems of Green, Gauss and Stokes. Throughout the book, the authors motivate the study of calculus using its applications. Many solved problems are included, and extensive exercises are given at the end of each section. In addition, a separate student guide has been prepared.
The goal of this text is to help students learn to use calculus intelligently for solving a wide variety of mathematical and physical problems. This book is an outgrowth of our teaching of calculus at Berkeley, and the present edition incorporates many improvements based on our use of the first edition. We list below some of the key features of the book. Examples and Exercises The exercise sets have been carefully constructed to be of maximum use to the students. With few exceptions we adhere to the following policies. * The section exercises are graded into three consecutive groups: (a) The first exercises are routine, modelled almost exactly on the exam ples; these are intended to give students confidence. (b) Next come exercises that are still based directly on the examples and text but which may have variations of wording or which combine different ideas; these are intended to train students to think for themselves. (c) The last exercises in each set are difficult. These are marked with a star (*) and some will challenge even the best students. Difficult does not necessarily mean theoretical; often a starred problem is an interesting application that requires insight into what calculus is really about. * The exercises come in groups of two and often four similar ones.
|
You may like...
|