Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 22 of 22 matches in All Departments
This volume is part of the collaboration agreement between Springer and the ISAAC society. This is the second in the two-volume series originating from the 2020 activities within the international scientific conference "Modern Methods, Problems and Applications of Operator Theory and Harmonic Analysis" (OTHA), Southern Federal University, Rostov-on-Don, Russia. This volume focuses on mathematical methods and applications of probability and statistics in the context of general harmonic analysis and its numerous applications. The two volumes cover new trends and advances in several very important fields of mathematics, developed intensively over the last decade. The relevance of this topic is related to the study of complex multi-parameter objects required when considering operators and objects with variable parameters.
For the first two editions of the book Probability (GTM 95), each chapter included a comprehensive and diverse set of relevant exercises. While the work on the third edition was still in progress, it was decided that it would be more appropriate to publish a separate book that would comprise all of the exercises from previous editions, in addition tomany new exercises. Most of the material in this book consists of exercises created by Shiryaev, collected and compiled over the course of many years while working on many interesting topics.Many of the exercises resulted from discussions that took place during special seminars for graduate and undergraduate students. Many of the exercises included in the book contain helpful hints and other relevant information. Lastly, the author has included an appendix at the end of the book that contains a summary of the main results, notation and terminology from Probability Theory that are used throughout the present book. This Appendix also contains additional material from Combinatorics, Potential Theory and Markov Chains, which is not covered in the book, but is nevertheless needed for many of the exercises included here."
This volume of the Encyclopaedia is a survey of stochastic calculus, an increasingly important part of probability, authored by well-known experts in the field. The book addresses graduate students and researchers in probability theory and mathematical statistics, as well as physicists and engineers who need to apply stochastic methods.
Since the pioneering work of Black, Scholes, and Merton in the field of financial mathematics, research has led to the rapid development of a substantial body of knowledge, with plenty of applications to the common functioning of the world 's financial institutions. Mathematics, as the language of science, has always played a role in the development of knowledge and technology. Presently, the high-tech character of modern business has increased the need for advanced methods, which rely to a large extent on mathematical techniques. It has become essential for the financial analyst to possess a high degree of proficiency in these mathematical techniques.
The subject of these two volumes is non-linear filtering (prediction and smoothing) theory and its application to the problem of optimal estimation, control with incomplete data, information theory, and sequential testing of hypothesis. The book is not only addressed to mathematicians but should also serve the interests of other scientists who apply probabilistic and statistical methods in their work. The theory of martingales presented in the book has an independent interest in connection with problems from financial mathematics. In the second edition, the authors have made numerous corrections, updating every chapter, adding two new subsections devoted to the Kalman filter under wrong initial conditions, as well as a new chapter devoted to asymptotically optimal filtering under diffusion approximation. Moreover, in each chapter a comment is added about the progress of recent years.
The subject of these two volumes is non-linear filtering (prediction and smoothing) theory and its application to the problem of optimal estimation, control with incomplete data, information theory, and sequential testing of hypothesis. The book is not only addressed to mathematicians but should also serve the interests of other scientists who apply probabilistic and statistical methods in their work. The theory of martingales presented in the book has an independent interest in connection with problems from financial mathematics. In the second edition, the authors have made numerous corrections, updating every chapter, adding two new subsections devoted to the Kalman filter under wrong initial conditions, as well as a new chapter devoted to asymptotically optimal filtering under diffusion approximation. Moreover, in each chapter a comment is added about the progress of recent years.
Collecting together selected pioneering works of the celebrated mathematician Anatolii V. Skorokhod, this volume serves as a guide to the theory of stochastic processes from its beginning to its current state. It offers both an excellent bibliographic resource and a unique opportunity for readers to gain a better understanding of Skorokhod's original and beautiful ideas, which had a deep impact on the development of the subject. The modern theory of stochastic processes is a fast-growing branch of probability theory which is now an independent science in its own right, with its own methods and philosophy. It has many applications in various fields, including financial mathematics, quantum physics and engineering. A clear understanding of this theory is impossible without knowledge of the ideas which form its base, many of which are due to Skorokhod. The book is intended for a broad audience of researchers and students with an interest in probability theory, stochastic processes and their applications.
This monograph focuses on those stochastic quickest detection tasks in disorder problems that arise in the dynamical analysis of statistical data. These include quickest detection of randomly appearing targets, of spontaneously arising effects, and of arbitrage (in financial mathematics). There is also currently great interest in quickest detection methods for randomly occurring intrusions in information systems and in the design of defense methods against cyber-attacks. The author shows that the majority of quickest detection problems can be reformulated as optimal stopping problems where the stopping time is the moment the occurrence of disorder is signaled. Thus, considerable attention is devoted to the general theory of optimal stopping rules, and to its concrete problem-solving methods. The exposition covers both the discrete time case, which is in principle relatively simple and allows step-by-step considerations, and the continuous-time case, which often requires more technical machinery such as martingales, supermartingales, and stochastic integrals. There is a focus on the well-developed apparatus of Brownian motion, which enables the exact solution of many problems. The last chapter presents applications to financial markets. Researchers and graduate students interested in probability, decision theory and statistical sequential analysis will find this book useful.
Change of Time and Change of Measure provides a comprehensive account of two topics that are of particular significance in both theoretical and applied stochastics: random change of time and change of probability law.Random change of time is key to understanding the nature of various stochastic processes, and gives rise to interesting mathematical results and insights of importance for the modeling and interpretation of empirically observed dynamic processes. Change of probability law is a technique for solving central questions in mathematical finance, and also has a considerable role in insurance mathematics, large deviation theory, and other fields.The book comprehensively collects and integrates results from a number of scattered sources in the literature and discusses the importance of the results relative to the existing literature, particularly with regard to mathematical finance.In this Second Edition a Chapter 13 entitled 'A Wider View' has been added. This outlines some of the developments that have taken place in the area of Change of Time and Change of Measure since the publication of the First Edition. Most of these developments have their root in the study of the Statistical Theory of Turbulence rather than in Financial Mathematics and Econometrics, and they form part of the new research area termed 'Ambit Stochastics'.
Change of Time and Change of Measure provides a comprehensive account of two topics that are of particular significance in both theoretical and applied stochastics: random change of time and change of probability law.Random change of time is key to understanding the nature of various stochastic processes, and gives rise to interesting mathematical results and insights of importance for the modeling and interpretation of empirically observed dynamic processes. Change of probability law is a technique for solving central questions in mathematical finance, and also has a considerable role in insurance mathematics, large deviation theory, and other fields.The book comprehensively collects and integrates results from a number of scattered sources in the literature and discusses the importance of the results relative to the existing literature, particularly with regard to mathematical finance. It is invaluable as a textbook for graduate-level courses and students or a handy reference for researchers and practitioners in financial mathematics and econometrics.
This important book provides information necessary for those dealing with stochastic calculus and pricing in the models of financial markets operating under uncertainty; introduces the reader to the main concepts, notions and results of stochastic financial mathematics; and develops applications of these results to various kinds of calculations required in financial engineering. It also answers the requests of teachers of financial mathematics and engineering by making a bias towards probabilistic and statistical ideas and the methods of stochastic calculus in the analysis of market risks.
Highlighting the latest advances in stochastic analysis and its applications, this volume collects carefully selected and peer-reviewed papers from the 5th International Conference on Stochastic Methods (ICSM-5), held in Moscow, Russia, November 23-27, 2020. The contributions deal with diverse topics such as stochastic analysis, stochastic methods in computer science, analytical modeling, asymptotic methods and limit theorems, Markov processes, martingales, insurance and financial mathematics, queueing theory and stochastic networks, reliability theory, risk analysis, statistical methods and applications, machine learning and data analysis. The 29 articles in this volume are a representative sample of the 87 high-quality papers accepted and presented during the conference. The aim of the ICSM-5 conference is to promote the collaboration of researchers from Russia and all over the world, and to contribute to the development of the field of stochastic analysis and applications of stochastic models.
The creative work of Andrei N. Kolmogorov is exceptionally wide-ranging. In his studies on trigonometric and orthogonal series, the theory of measure and inte gral, mathematical logic, approximation theory, geometry, topology, functional analysis, classical mechanics, ergodic theory, superposition of functions, and in formation theory, he solved many conceptual and fundamental problems and posed new questions which gave rise to a great deal of further research. Kolmogorov is one of the founders of the Soviet school of probability theory, mathematical statistics, and the theory of turbulence. In these areas he obtained a number of central results, with many applications to mechanics, geophysics, linguistics and biology, among other subjects. This edition includes Kolmogorov's most important papers on mathematics and the natural sciences. It does not include his philosophical and ped agogical studies, his articles written for the "Bolshaya Sovetskaya Entsiklopediya", his papers on prosody and applications of mathematics or his publications on general questions. The material of this edition was selected and compiled by Kolmogorov himself.The first volume consists of papers on mathematics and also on turbulence and classical mechanics. The second volume is devoted to probability theory and mathematical statistics. The focus of the third volume is on information theory and the theory of algorithms.
Collecting together selected pioneering works of the celebrated mathematician Anatolii V. Skorokhod, this volume serves as a guide to the theory of stochastic processes from its beginning to its current state. It offers both an excellent bibliographic resource and a unique opportunity for readers to gain a better understanding of Skorokhod's original and beautiful ideas, which had a deep impact on the development of the subject. The modern theory of stochastic processes is a fast-growing branch of probability theory which is now an independent science in its own right, with its own methods and philosophy. It has many applications in various fields, including financial mathematics, quantum physics and engineering. A clear understanding of this theory is impossible without knowledge of the ideas which form its base, many of which are due to Skorokhod. The book is intended for a broad audience of researchers and students with an interest in probability theory, stochastic processes and their applications.
For the first two editions of the book Probability (GTM 95), each chapter included a comprehensive and diverse set of relevant exercises. While the work on the third edition was still in progress, it was decided that it would be more appropriate to publish a separate book that would comprise all of the exercises from previous editions, in addition to many new exercises. Most of the material in this book consists of exercises created by Shiryaev, collected and compiled over the course of many years while working on many interesting topics. Many of the exercises resulted from discussions that took place during special seminars for graduate and undergraduate students. Many of the exercises included in the book contain helpful hints and other relevant information. Lastly, the author has included an appendix at the end of the book that contains a summary of the main results, notation and terminology from Probability Theory that are used throughout the present book. This Appendix also contains additional material from Combinatorics, Potential Theory and Markov Chains, which is not covered in the book, but is nevertheless needed for many of the exercises included here.
These volumes cover non-linear filtering (prediction and smoothing) theory and its applications to the problem of optimal estimation, control with incomplete data, information theory, and sequential testing of hypothesis. Also presented is the theory of martingales, of interest to those who deal with problems in financial mathematics. These editions include new material, expanded chapters, and comments on recent progress in the field.
This volume of the Encyclopaedia is a survey of stochastic calculus, an increasingly important part of probability, authored by well-known experts in the field. The book addresses graduate students and researchers in probability theory and mathematical statistics, as well as physicists and engineers who need to apply stochastic methods.
"Written by two renowned experts in the field, the books under review contain a thorough and insightful treatment of the fundamental underpinnings of various aspects of stochastic processes as well as a wide range of applications. Providing clear exposition, deep mathematical results, and superb technical representation, they are masterpieces of the subject of stochastic analysis and nonlinear filtering....These books...will become classics." --SIAM REVIEW
Since the pioneering work of Black, Scholes, and Merton in the field of financial mathematics, research has led to the rapid development of a substantial body of knowledge, with plenty of applications to the common functioning of the world 's financial institutions. Mathematics, as the language of science, has always played a role in the development of knowledge and technology. Presently, the high-tech character of modern business has increased the need for advanced methods, which rely to a large extent on mathematical techniques. It has become essential for the financial analyst to possess a high degree of proficiency in these mathematical techniques.
The creative work of Andrei N. Kolmogorov is exceptionally wide-ranging. In his studies on trigonometric and orthogonal series, the theory of measure and inte gral, mathematical logic, approximation theory, geometry, topology, functional analysis, classical mechanics, ergodic theory, superposition of functions, and in formation theory, he solved many conceptual and fundamental problems and posed new questions which gave rise to a great deal of further research. Kolmogorov is one of the founders of the Soviet school of probability theory, mathematical statistics, and the theory of turbulence. In these areas he obtained a number of central results, with many applications to mechanics, geophysics, linguistics and biology, among other subjects. This edition includes Kolmogorov's most important papers on mathematics and the natural sciences. It does not include his philosophical and ped agogical studies, his articles written for the "Bolshaya Sovetskaya Entsiklopediya", his papers on prosody and applications of mathematics or his publications on general questions. The material of this edition was selected and compiled by Kolmogorov himself.The first volume consists of papers on mathematics and also on turbulence and classical mechanics. The second volume is devoted to probability theory and mathematical statistics. The focus of the third volume is on information theory and the theory of algorithms.
This volume is part of the collaboration agreement between Springer and the ISAAC society. This is the second in the two-volume series originating from the 2020 activities within the international scientific conference "Modern Methods, Problems and Applications of Operator Theory and Harmonic Analysis" (OTHA), Southern Federal University, Rostov-on-Don, Russia. This volume focuses on mathematical methods and applications of probability and statistics in the context of general harmonic analysis and its numerous applications. The two volumes cover new trends and advances in several very important fields of mathematics, developed intensively over the last decade. The relevance of this topic is related to the study of complex multi-parameter objects required when considering operators and objects with variable parameters.
Although three decades have passed since first publication of this book reprinted now as a result of popular demand, the content remains up-to-date and interesting for many researchers as is shown by the many references to it in current publications. The "ground floor" of Optimal Stopping Theory was constructed by A.Wald in his sequential analysis in connection with the testing of statistical hypotheses by non-traditional (sequential) methods. It was later discovered that these methods have, in idea, a close connection to the general theory of stochastic optimization for random processes. The area of application of the Optimal Stopping Theory is very broad. It is sufficient at this point to emphasise that its methods are well tailored to the study of American (-type) options (in mathematics of finance and financial engineering), where a buyer has the freedom to exercise an option at any stopping time. In this book, the general theory of the construction of optimal stopping policies is developed for the case of Markov processes in discrete and continuous time. One chapter is devoted specially to the applications that address problems of the testing of statistical hypotheses, and quickest detection of the time of change of the probability characteristics of the observable processes. The author, A.N.Shiryaev, is one of the leading experts of the field and gives an authoritative treatment of a subject that, 30 years after original publication of this book, is proving increasingly important.
|
You may like...
|