Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 25 of 30 matches in All Departments
This handbook covers recent advances in the integration of three areas, namely, cloud computing, cyber-physical systems, and the Internet of things which is expected to have a tremendous impact on our daily lives. It contains a total of thirteen peer-reviewed and edited chapters. This book covers topics such as context-aware cyber-physical systems, sustainable cloud computing, fog computing, and cloud monitoring; both the theoretical and practical aspects belonging to these topics are discussed. All the chapters also discuss open research challenges in the areas mentioned above. Finally, the handbook presents three use cases regarding healthcare, smart buildings and disaster management to assist the audience in understanding how to develop next-generation IoT- and cloud-enabled cyber-physical systems. This timely handbook is edited for students, researchers, as well as professionals who are interested in the rapidly growing fields of cloud computing, cyber-physical systems, and the Internet of things.
This volume offers readers various perspectives and visions for cutting-edge research in ubiquitous healthcare. The topics emphasize large-scale architectures and high performance solutions for smart healthcare, healthcare monitoring using large-scale computing techniques, Internet of Things (IoT) and big data analytics for healthcare, Fog Computing, mobile health, large-scale medical data mining, advanced machine learning methods for mining multidimensional sensor data, smart homes, and resource allocation methods for the BANs. The book contains high quality chapters contributed by leading international researchers working in domains, such as e-Health, pervasive and context-aware computing, cloud, grid, cluster, and big-data computing. We are optimistic that the topics included in this book will provide a multidisciplinary research platform to the researchers, practitioners, and students from biomedical engineering, health informatics, computer science, and computer engineering.
This handbook offers comprehensive coverage of recent advancements in Big Data technologies and related paradigms. Chapters are authored by international leading experts in the field, and have been reviewed and revised for maximum reader value. The volume consists of twenty-five chapters organized into four main parts. Part one covers the fundamental concepts of Big Data technologies including data curation mechanisms, data models, storage models, programming models and programming platforms. It also dives into the details of implementing Big SQL query engines and big stream processing systems. Part Two focuses on the semantic aspects of Big Data management including data integration and exploratory ad hoc analysis in addition to structured querying and pattern matching techniques. Part Three presents a comprehensive overview of large scale graph processing. It covers the most recent research in large scale graph processing platforms, introducing several scalable graph querying and mining mechanisms in domains such as social networks. Part Four details novel applications that have been made possible by the rapid emergence of Big Data technologies such as Internet-of-Things (IOT), Cognitive Computing and SCADA Systems. All parts of the book discuss open research problems, including potential opportunities, that have arisen from the rapid progress of Big Data technologies and the associated increasing requirements of application domains. Designed for researchers, IT professionals and graduate students, this book is a timely contribution to the growing Big Data field. Big Data has been recognized as one of leading emerging technologies that will have a major contribution and impact on the various fields of science and varies aspect of the human society over the coming decades. Therefore, the content in this book will be an essential tool to help readers understand the development and future of the field.
Today s highly parameterized large-scale distributed computing systems may be composed of a large number of various components (computers, databases, etc) and must provide a wide range of services. The users of such systems, located at different (geographical or managerial) network cluster may have a limited access to the system s services and resources, and different, often conflicting, expectations and requirements. Moreover, the information and data processed in such dynamic environments may be incomplete, imprecise, fragmentary, and overloading. All of the above mentioned issues require some intelligent scalable methodologies for the management of the whole complex structure, which unfortunately may increase the energy consumption of such systems. An optimal energy utilization has reached to a point that many information technology (IT) managers and corporate executives are all up in arms to identify scalable solution that can reduce electricity consumption (so that the total cost of operation is minimized) of their respective large-scale computing systems and simultaneously improve upon or maintain the current throughput of the system. This book in its eight chapters, addresses the fundamental issues related to the energy usage and the optimal low-cost system design in high performance green computing systems. The recent evolutionary and general metaheuristic-based solutions for energy optimization in data processing, scheduling, resource allocation, and communication in modern computational grids, could and network computing are presented along with several important conventional technologies to cover the hot topics from the fundamental theory of the green computing concept and to describe the basic architectures of systems. This book points out the potential application areas and provides detailed examples of application case studies in low-energy computational systems. The development trends and open research issues are also outlined. All of those technologies have formed the foundation for the green computing that we know of today."
This book covers state of the art interdisciplinary research on key disruptive and interrelated technologies such as Big Data, Edge computing, IoT and Cloud computing. The authors address the challenges from a distributed system perspective, with clear contributions in theory and applications. Real-world case studies look at the integration of these technologies in healthcare, disaster management, smart grids, and other areas. The book covers vital topics including devices and sensing; cloud and edge Infrastructure; big data processing; application resource management; and privacy and security.
Scheduling in Parallel Computing Systems: Fuzzy and Annealing Techniques advocates the viability of using fuzzy and annealing methods in solving scheduling problems for parallel computing systems. The book proposes new techniques for both static and dynamic scheduling, using emerging paradigms that are inspired by natural phenomena such as fuzzy logic, mean-field annealing, and simulated annealing. Systems that are designed using such techniques are often referred to in the literature as intelligent' because of their capability to adapt to sudden changes in their environments. Moreover, most of these changes cannot be anticipated in advance or included in the original design of the system. Scheduling in Parallel Computing Systems: Fuzzy and Annealing Techniques provides results that prove such approaches can become viable alternatives to orthodox solutions to the scheduling problem, which are mostly based on heuristics. Although heuristics are robust and reliable when solving certain instances of the scheduling problem, they do not perform well when one needs to obtain solutions to general forms of the scheduling problem. On the other hand, techniques inspired by natural phenomena have been successfully applied for solving a wide range of combinatorial optimization problems (e.g. traveling salesman, graph partitioning). The success of these methods motivated their use in this book to solve scheduling problems that are known to be formidable combinatorial problems. Scheduling in Parallel Computing Systems: Fuzzy and Annealing Techniques is an excellent reference and may be used for advanced courses on the topic.
First designed to generate personalized recommendations to users in the 90s, recommender systems apply knowledge discovery techniques to users' data to suggest information, products, and services that best match their preferences. In recent decades, we have seen an exponential increase in the volumes of data, which has introduced many new challenges. Divided into two volumes, this comprehensive set covers recent advances, challenges, novel solutions, and applications in big data recommender systems. Volume 1 contains 14 chapters addressing foundations, algorithms and architectures, approaches for big data, and trust and security measures. Volume 2 covers a broad range of application paradigms for recommender systems over 22 chapters.
From the Foreword: "Big Data Management and Processing is [a] state-of-the-art book that deals with a wide range of topical themes in the field of Big Data. The book, which probes many issues related to this exciting and rapidly growing field, covers processing, management, analytics, and applications... [It] is a very valuable addition to the literature. It will serve as a source of up-to-date research in this continuously developing area. The book also provides an opportunity for researchers to explore the use of advanced computing technologies and their impact on enhancing our capabilities to conduct more sophisticated studies." ---Sartaj Sahni, University of Florida, USA "Big Data Management and Processing covers the latest Big Data research results in processing, analytics, management and applications. Both fundamental insights and representative applications are provided. This book is a timely and valuable resource for students, researchers and seasoned practitioners in Big Data fields. --Hai Jin, Huazhong University of Science and Technology, China Big Data Management and Processing explores a range of big data related issues and their impact on the design of new computing systems. The twenty-one chapters were carefully selected and feature contributions from several outstanding researchers. The book endeavors to strike a balance between theoretical and practical coverage of innovative problem solving techniques for a range of platforms. It serves as a repository of paradigms, technologies, and applications that target different facets of big data computing systems. The first part of the book explores energy and resource management issues, as well as legal compliance and quality management for Big Data. It covers In-Memory computing and In-Memory data grids, as well as co-scheduling for high performance computing applications. The second part of the book includes comprehensive coverage of Hadoop and Spark, along with security, privacy, and trust challenges and solutions. The latter part of the book covers mining and clustering in Big Data, and includes applications in genomics, hospital big data processing, and vehicular cloud computing. The book also analyzes funding for Big Data projects.
The fields of Big Data and the Internet of Things (IoT) have seen tremendous advances, developments, and growth in recent years. The IoT is the inter-networking of connected smart devices, buildings, vehicles and other items which are embedded with electronics, software, sensors and actuators, and network connectivity that enable these objects to collect and exchange data. The IoT produces a lot of data. Big data describes very large and complex data sets that traditional data processing application software is inadequate to deal with, and the use of analytical methods to extract value from data. This edited book covers analytical techniques for handling the huge amount of data generated by the Internet of Things, from architectures and platforms to security and privacy issues, applications, and challenges as well as future directions.
As computing devices proliferate, demand increases for an understanding of emerging computing paradigms and models based on natural phenomena. Neural networks, evolution-based models, quantum computing, and DNA-based computing and simulations are all a necessary part of modern computing analysis and systems development. Vast literature exists on these new paradigms and their implications for a wide array of applications. This comprehensive handbook, the first of its kind to address the connection between nature-inspired and traditional computational paradigms, is a repository of case studies dealing with different problems in computing and solutions to these problems based on nature-inspired paradigms. The "Handbook of Nature-Inspired and Innovative Computing: Integrating Classical Models with Emerging Technologies" is an essential compilation of models, methods, and algorithms for researchers, professionals, and advanced-level students working in all areas of computer science, IT, biocomputing, and network engineering.
The mystique of biologically inspired (or bioinspired) paradigms is their ability to describe and solve complex relationships from intrinsically very simple initial conditions and with little or no knowledge of the search space. Edited by two prominent, well-respected researchers, the Handbook of Bioinspired Algorithms and Applications reveals the connections between bioinspired techniques and the development of solutions to problems that arise in diverse problem domains. A repository of the theory and fundamentals as well as a manual for practical implementation, this authoritative handbook provides broad coverage in a single source along with numerous references to the available literature for more in-depth information. The book's two sections serve to balance coverage of theory and practical applications. The first section explains the fundamentals of techniques, such as evolutionary algorithms, swarm intelligence, cellular automata, and others. Detailed examples and case studies in the second section illustrate how to apply the theory in actually developing solutions to a particular problem based on a bioinspired technique. Emphasizing the importance of understanding and harnessing the robust capabilities of bioinspired techniques for solving computationally intractable optimizations and decision-making applications, the Handbook of Bioinspired Algorithms and Applications is an absolute must-read for anyone who is serious about advancing the next generation of computing.
This handbook covers recent advances in the integration of three areas, namely, cloud computing, cyber-physical systems, and the Internet of things which is expected to have a tremendous impact on our daily lives. It contains a total of thirteen peer-reviewed and edited chapters. This book covers topics such as context-aware cyber-physical systems, sustainable cloud computing, fog computing, and cloud monitoring; both the theoretical and practical aspects belonging to these topics are discussed. All the chapters also discuss open research challenges in the areas mentioned above. Finally, the handbook presents three use cases regarding healthcare, smart buildings and disaster management to assist the audience in understanding how to develop next-generation IoT- and cloud-enabled cyber-physical systems. This timely handbook is edited for students, researchers, as well as professionals who are interested in the rapidly growing fields of cloud computing, cyber-physical systems, and the Internet of things.
This book presents state-of-the-art solutions to the theoretical and practical challenges stemming from the leverage of big data and its computational intelligence in supporting smart network operation, management, and optimization. In particular, the technical focus covers the comprehensive understanding of network big data, efficient collection and management of network big data, distributed and scalable online analytics for network big data, and emerging applications of network big data for computational intelligence.
This handbook offers comprehensive coverage of recent advancements in Big Data technologies and related paradigms. Chapters are authored by international leading experts in the field, and have been reviewed and revised for maximum reader value. The volume consists of twenty-five chapters organized into four main parts. Part one covers the fundamental concepts of Big Data technologies including data curation mechanisms, data models, storage models, programming models and programming platforms. It also dives into the details of implementing Big SQL query engines and big stream processing systems. Part Two focuses on the semantic aspects of Big Data management including data integration and exploratory ad hoc analysis in addition to structured querying and pattern matching techniques. Part Three presents a comprehensive overview of large scale graph processing. It covers the most recent research in large scale graph processing platforms, introducing several scalable graph querying and mining mechanisms in domains such as social networks. Part Four details novel applications that have been made possible by the rapid emergence of Big Data technologies such as Internet-of-Things (IOT), Cognitive Computing and SCADA Systems. All parts of the book discuss open research problems, including potential opportunities, that have arisen from the rapid progress of Big Data technologies and the associated increasing requirements of application domains. Designed for researchers, IT professionals and graduate students, this book is a timely contribution to the growing Big Data field. Big Data has been recognized as one of leading emerging technologies that will have a major contribution and impact on the various fields of science and varies aspect of the human society over the coming decades. Therefore, the content in this book will be an essential tool to help readers understand the development and future of the field.
This book presents research papers from diverse areas on novel Intelligent Systems and Interactive Systems and Applications. It gathers selected research papers presented at the 2nd International Conference on Intelligent and Interactive Systems and Applications (IISA2017), which was held on June 17-18, 2017 in Beijing, China. Interactive Intelligent Systems (IIS) are systems that interact with human beings, media or virtual agents in intelligent computing environments. The emergence of Big Data and the Internet of Things have now opened new opportunities in both academic and industrial research for the successful design and development of intelligent interactive systems. This book explores how novel interactive systems can be used to overcome various challenges and limitations previously encountered by human beings by combining machine learning algorithms and the analysis of recent trends. The book presents 125 contributions, which have been categorized into seven sections, namely: i) Autonomous Systems; ii) Pattern Recognition and Vision Systems; iii) E-Enabled Systems; iv) Mobile Computing and Intelligent Networking; v) Internet and Cloud Computing; vi) Intelligent Systems, and vii) Various Applications. It not only offers readers extensive theoretical information on Intelligent and Interactive Systems, but also introduces them to various applications in different domains.
Today's highly parameterized large-scale distributed computing systems may be composed of a large number of various components (computers, databases, etc) and must provide a wide range of services. The users of such systems, located at different (geographical or managerial) network cluster may have a limited access to the system's services and resources, and different, often conflicting, expectations and requirements. Moreover, the information and data processed in such dynamic environments may be incomplete, imprecise, fragmentary, and overloading. All of the above mentioned issues require some intelligent scalable methodologies for the management of the whole complex structure, which unfortunately may increase the energy consumption of such systems. An optimal energy utilization has reached to a point that many information technology (IT) managers and corporate executives are all up in arms to identify scalable solution that can reduce electricity consumption (so that the total cost of operation is minimized) of their respective large-scale computing systems and simultaneously improve upon or maintain the current throughput of the system. This book in its eight chapters, addresses the fundamental issues related to the energy usage and the optimal low-cost system design in high performance ``green computing'' systems. The recent evolutionary and general metaheuristic-based solutions for energy optimization in data processing, scheduling, resource allocation, and communication in modern computational grids, could and network computing are presented along with several important conventional technologies to cover the hot topics from the fundamental theory of the ''green computing'' concept and to describe the basic architectures of systems. This book points out the potential application areas and provides detailed examples of application case studies in low-energy computational systems. The development trends and open research issues are also outlined. All of those technologies have formed the foundation for the green computing that we know of today.
This book constitutes the refereed post-proceedings of the 9th IFIP International Conference on Network and Parallel Computing, NPC 2012, held in Gwangju, Korea, in September 2012. The 38 papers presented were carefully reviewed and selected from 136 submissions. The papers are organized in the following topical sections: algorithms, scheduling, analysis, and data mining; network architecture and protocol design; network security; paralel, distributed, and virtualization techniques; performance modeling, prediction, and tuning; resource management; ubiquitous communications and networks; and web, communication, and cloud computing. In addition, a total of 37 papers selected from five satellite workshops (ATIMCN, ATSME, Cloud&Grid, DATICS, and UMAS 2012) are included.
Scheduling in Parallel Computing Systems: Fuzzy and Annealing Techniques advocates the viability of using fuzzy and annealing methods in solving scheduling problems for parallel computing systems. The book proposes new techniques for both static and dynamic scheduling, using emerging paradigms that are inspired by natural phenomena such as fuzzy logic, mean-field annealing, and simulated annealing. Systems that are designed using such techniques are often referred to in the literature as intelligent' because of their capability to adapt to sudden changes in their environments. Moreover, most of these changes cannot be anticipated in advance or included in the original design of the system. Scheduling in Parallel Computing Systems: Fuzzy and Annealing Techniques provides results that prove such approaches can become viable alternatives to orthodox solutions to the scheduling problem, which are mostly based on heuristics. Although heuristics are robust and reliable when solving certain instances of the scheduling problem, they do not perform well when one needs to obtain solutions to general forms of the scheduling problem. On the other hand, techniques inspired by natural phenomena have been successfully applied for solving a wide range of combinatorial optimization problems (e.g. traveling salesman, graph partitioning). The success of these methods motivated their use in this book to solve scheduling problems that are known to be formidable combinatorial problems. Scheduling in Parallel Computing Systems: Fuzzy and Annealing Techniques is an excellent reference and may be used for advanced courses on the topic.
First designed to generate personalized recommendations to users in the 90s, recommender systems apply knowledge discovery techniques to users' data to suggest information, products, and services that best match their preferences. In recent decades, we have seen an exponential increase in the volumes of data, which has introduced many new challenges. Divided into two volumes, this comprehensive set covers recent advances, challenges, novel solutions, and applications in big data recommender systems. Volume 2 covers a broad range of application paradigms for recommender systems over 22 chapters. Volume 1 contains 14 chapters addressing foundations, algorithms and architectures, approaches for big data, and trust and security measures.
This book constitutes the refereed proceedings of the International Conference on Recent Trends in Computer Networks and Distributed Systems Security, held in Trivandrum, India, in October 2012. The 34 revised full papers and 8 poster presentations were carefully reviewed and selected from 112 submissions. The papers cover various topics in Computer Networks and Distributed Systems.
The two volume set LNCS 7439 and 7440 comprises the proceedings of the 12th International Conference on Algorithms and Architectures for Parallel Processing, ICA3PP 2012, as well as some workshop papers of the CDCN 2012 workshop which was held in conjunction with this conference. The 40 regular paper and 26 short papers included in these proceedings were carefully reviewed and selected from 156 submissions. The CDCN workshop attracted a total of 19 original submissions, 8 of which are included in part II of these proceedings. The papers cover many dimensions of parallel algorithms and architectures, encompassing fundamental theoretical approaches, practical experimental results, and commercial components and systems.
This volume constitutes the refereed proceedings of the 5th International Conference on Contemporary Computing, IC3 2010, held in Noida, India, in August 2011. The 42 revised full papers presented together with 7 short papers were carefully reviewed and selected from 162 submissions. The papers are organized in topical sections on: algorithm; applications; systems (hardware and software); biomedical informations; poster papers.
The two volume set LNCS 7439 and 7440 comprises the proceedings of the 12th International Conference on Algorithms and Architectures for Parallel Processing, ICA3PP 2012, as well as some workshop papers of the CDCN 2012 workshop which was held in conjunction with this conference. The 40 regular paper and 26 short papers included in these proceedings were carefully reviewed and selected from 156 submissions. The CDCN workshop attracted a total of 19 original submissions, 8 of which are included in part II of these proceedings. The papers cover many dimensions of parallel algorithms and architectures, encompassing fundamental theoretical approaches, practical experimental results, and commercial components and systems.
As computing devices proliferate, demand increases for an understanding of emerging computing paradigms and models based on natural phenomena. Neural networks, evolution-based models, quantum computing, and DNA-based computing and simulations are all a necessary part of modern computing analysis and systems development. Vast literature exists on these new paradigms and their implications for a wide array of applications. This comprehensive handbook, the first of its kind to address the connection between nature-inspired and traditional computational paradigms, is a repository of case studies dealing with different problems in computing and solutions to these problems based on nature-inspired paradigms. The "Handbook of Nature-Inspired and Innovative Computing: Integrating Classical Models with Emerging Technologies" is an essential compilation of models, methods, and algorithms for researchers, professionals, and advanced-level students working in all areas of computer science, IT, biocomputing, and network engineering.
The mystique of biologically inspired (or bioinspired) paradigms is their ability to describe and solve complex relationships from intrinsically very simple initial conditions and with little or no knowledge of the search space. Edited by two prominent, well-respected researchers, the Handbook of Bioinspired Algorithms and Applications reveals the connections between bioinspired techniques and the development of solutions to problems that arise in diverse problem domains. A repository of the theory and fundamentals as well as a manual for practical implementation, this authoritative handbook provides broad coverage in a single source along with numerous references to the available literature for more in-depth information. The book's two sections serve to balance coverage of theory and practical applications. The first section explains the fundamentals of techniques, such as evolutionary algorithms, swarm intelligence, cellular automata, and others. Detailed examples and case studies in the second section illustrate how to apply the theory in actually developing solutions to a particular problem based on a bioinspired technique. Emphasizing the importance of understanding and harnessing the robust capabilities of bioinspired techniques for solving computationally intractable optimizations and decision-making applications, the Handbook of Bioinspired Algorithms and Applications is an absolute must-read for anyone who is serious about advancing the next generation of computing. |
You may like...
Rogue One: A Star Wars Story - Blu-Ray…
Felicity Jones, Diego Luna, …
Blu-ray disc
R382
Discovery Miles 3 820
|