Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
This monograph discusses statistics and risk estimates applied to radiation damage under the presence of measurement errors. The first part covers nonlinear measurement error models, with a particular emphasis on efficiency of regression parameter estimators. In the second part, risk estimation in models with measurement errors is considered. Efficiency of the methods presented is verified using data from radio-epidemiological studies. Contents: Part I - Estimation in regression models with errors in covariates Measurement error models Linear models with classical error Polynomial regression with known variance of classical error Nonlinear and generalized linear models Part II Radiation risk estimation under uncertainty in exposure doses Overview of risk models realized in program package EPICURE Estimation of radiation risk under classical or Berkson multiplicative error in exposure doses Radiation risk estimation for persons exposed by radioiodine as a result of the Chornobyl accident Elements of estimating equations theory Consistency of efficient methods Efficient SIMEX method as a combination of the SIMEX method and the corrected score method Application of regression calibration in the model with additive error in exposure doses
Thiscollectionofproblemsisplannedasatextbookforuniversitycoursesinthe theoryofstochasticprocessesandrelatedspecialcourses. Theproblemsinthebook haveawidespectrumofthelevelofdif cultyandcanbeusefulforreaderswith variouslevelsofmasteringinthetheoryofstochasticprocesses. Togetherwithte- nicalandillustrativeproblemsintendedforbeginners,thebookcontainsanumber ofproblemsoftheoreticalnaturethatcanbeusefulforstudentsandundergraduate studentsthatpursueadvancedstudiesinthetheoryofstochasticprocessesandits- plications. Amongothers,theimportantaimofthebookistoprovideateachingstaff anef cienttoolforpreparingseminarstudies,tests,andexamsconcerninguniversity coursesinthetheoryofstochasticprocessesandrelatedtopics. Whilecomposingthe book,theauthorshavepartiallyusedthecollectionsofproblemsinprobabilityt- ory[16,65,75,83]. Also,someexercisesandproblemsfromthemonographsand textbooks[4,9,19,22,82]wereused. Atthesametime,alargepartofourproblem bookcontainsoriginalmaterial. Thebookisorganizedasfollows. Theproblemsarecollectedintochapters,each chapterbeingdevotedtoacertaintopic. Atthebeginningofeachchapter,theth- reticalgroundsforthecorrespondingtopicaregivenbrie ytogetherwiththelistof bibliography,whichthereadercanuseinordertostudythistopicinmoredetail. For themostoftheproblems,eitherhintsorcompletesolutions(oranswers)aregiven, andsomeoftheproblemsareprovidedwithbothhintsandsolutions(answers). H- ever,theauthorsdonotrecommendthatareaderusethehintssystematically,because solvingaproblemwithoutassistanceismuchmoreusefulthanusingaready-made idea. Somestatementsthathaveaparticulartheoreticalinterestareformulatedon theoreticalgrounds,andtheirproofsareformulatedasproblemsforthereader. Such problemsaresuppliedwitheithercompletesolutionsordetailedhints. Inordertoworkwiththeproblembookef ciently,areadershouldbeacquainted withprobabilitytheory,calculus,andmeasuretheorywithinthescopeofresp- tiveuniversity courses. Standard notions, suchas random variable, measurability, independence, Lebesgue measure and integral, and so on are used without ad- tionaldiscussion. Allthenewnotionsandstatementsrequiredforsolvingthepr- lemsaregiveneitherontheoreticalgroundsorintheformulationsoftheproblems vii viii Preface straightforwardly. However,sometimesanotionisusedinthetextbeforeitsformal de nition. Forinstance,theWienerandPoissonprocessesareprocesseswithin- pendentincrementsandthusareformallyintroducedinaTheoreticalgroundsfor Chapter5,buttheseprocessesareusedwidelyintheproblemsofChapters2to4. Theauthorsrecommendthatareaderwhocomestoanunknownnotionorobject usetheIndexinorderto ndthecorrespondingformalde nition. Thesamerec- mendationconcernssomestandardabbreviationsandsymbolslistedattheendofthe book. Someproblemsinthebookformcycles:solutionstooneofthemaregrounded onstatementsofothersoronauxiliaryconstructionsdescribedinsomepreceding solutions. Sometimes,onthecontrary,itisproposedtoprovethesamestatement withindifferentproblemsusingessentiallydifferenttechniques. Theauthorsrec- mendareaderpayspeci cattentiontothesefruitfulinternallinksbetweenvarious topicsofthetheoryofstochasticprocesses. Everypartofthebookwascomposedsubstantiallybyoneauthor. Chapters1-6, and16arecomposedbyA. Kulik,Chapters7,12-15,18,and19byYu. Mishura, Chapters 8-10 by A. Pilipenko, Chapter 17 by A. Kukush, and Chapter 20 by D. Gusak. Chapter11waspreparedjointlybyD. GusakandA. Pilipenko. Atthe sametime,everyauthorhasmadeacontributiontootherpartsofthebookbyprop- ingseparateproblemsorcyclesofproblems,improvingpreliminaryversionsoft- oreticalgrounds,andeditingthe naltext. The authors would like to express their deep gratitude to M. Portenko and A. Ivanovfortheircarefulreadingofapreliminaryversionofthebookandva- ablecommentsthatledtosigni cantimprovementofthetext. Theauthorsarealso gratefultoT. Yakovenko,G. Shevchenko,O. Soloveyko, Yu. Kartashov, Yu. K- menko,A. Malenko,andN. Ryabovafortheirassistanceintranslation,preparing lesandpictures,andcomposingthesubjectindexandreferences. Thetheoryofstochasticprocessesisanextendeddiscipline,andtheauthors- derstandthattheproblembookinitscurrentformmaycausecriticalremarksfrom readers,concerningeitherthestructureofthebookorthecontentofseparatech- ters. Whilepublishingtheproblembookinitscurrentform,theauthorsareopenfor remarks,comments,andpropositions,andexpressinadvancetheirgratitudetoall theircorrespondents. Kyiv DmytroGusak December2008 AlexanderKukush AlexeyKulik YuliyaMishura AndreyPilipenko Contents 1 De?nition of stochastic process. Cylinder?-algebra, ?nite-dimensional distributions, the Kolmogorov theorem...1 Theoreticalgrounds ...1 Bibliography...3 Problems...3 Hints...7 AnswersandSolutions...9 2 Characteristics of a stochastic process. Mean and covariance functions. Characteristic functions...11 Theoreticalgrounds ...11 Bibliography...13 Problems...13 Hints...16 AnswersandSolutions...17 3 Trajectories. Modi?cations. Filtrations...21 Theoreticalgrounds ...21 Bibliography...24 Problems...24 Hints...29 AnswersandSolutions...31 4 Continuity. Differentiability. Integrability...33 Theoreticalgrounds ...33 Bibliography...34 Problems...34 Hints...38 AnswersandSolutions...40 ix x Contents 5 Stochastic processes with independent increments. Wiener and Poisson processes. Poisson point measures...
Versatile and comprehensive in content, this book of problems will appeal to students in nearly all areas of mathematics. The text offers original and advanced problems proposed from 1995 to 2016 at the Mathematics Olympiads. Essential for undergraduate students, PhD students, and instructors, the problems in this book vary in difficulty and cover most of the obligatory courses given at the undergraduate level, including calculus, algebra, geometry, discrete mathematics, measure theory, complex analysis, differential equations, and probability theory. Detailed solutions to all of the problems from Part I are supplied in Part II, giving students the ability to check their solutions and observe new and unexpected ideas. Most of the problems in this book are not technical and allow for a short and elegant solution. The problems given are unique and non-standard; solving the problems requires a creative approach as well as a deep understanding of the material. Nearly all of the problems are originally authored by lecturers, PhD students, senior undergraduates, and graduate students of the mechanics and mathematics faculty of Taras Shevchenko National University of Kyiv as well as by many others from Belgium, Canada, Great Britain, Hungary, and the United States.
Thiscollectionofproblemsisplannedasatextbookforuniversitycoursesinthe theoryofstochasticprocessesandrelatedspecialcourses. Theproblemsinthebook haveawidespectrumofthelevelofdif cultyandcanbeusefulforreaderswith variouslevelsofmasteringinthetheoryofstochasticprocesses. Togetherwithte- nicalandillustrativeproblemsintendedforbeginners,thebookcontainsanumber ofproblemsoftheoreticalnaturethatcanbeusefulforstudentsandundergraduate studentsthatpursueadvancedstudiesinthetheoryofstochasticprocessesandits- plications. Amongothers,theimportantaimofthebookistoprovideateachingstaff anef cienttoolforpreparingseminarstudies,tests,andexamsconcerninguniversity coursesinthetheoryofstochasticprocessesandrelatedtopics. Whilecomposingthe book,theauthorshavepartiallyusedthecollectionsofproblemsinprobabilityt- ory[16,65,75,83]. Also,someexercisesandproblemsfromthemonographsand textbooks[4,9,19,22,82]wereused. Atthesametime,alargepartofourproblem bookcontainsoriginalmaterial. Thebookisorganizedasfollows. Theproblemsarecollectedintochapters,each chapterbeingdevotedtoacertaintopic. Atthebeginningofeachchapter,theth- reticalgroundsforthecorrespondingtopicaregivenbrie ytogetherwiththelistof bibliography,whichthereadercanuseinordertostudythistopicinmoredetail. For themostoftheproblems,eitherhintsorcompletesolutions(oranswers)aregiven, andsomeoftheproblemsareprovidedwithbothhintsandsolutions(answers). H- ever,theauthorsdonotrecommendthatareaderusethehintssystematically,because solvingaproblemwithoutassistanceismuchmoreusefulthanusingaready-made idea. Somestatementsthathaveaparticulartheoreticalinterestareformulatedon theoreticalgrounds,andtheirproofsareformulatedasproblemsforthereader. Such problemsaresuppliedwitheithercompletesolutionsordetailedhints. Inordertoworkwiththeproblembookef ciently,areadershouldbeacquainted withprobabilitytheory,calculus,andmeasuretheorywithinthescopeofresp- tiveuniversity courses. Standard notions, suchas random variable, measurability, independence, Lebesgue measure and integral, and so on are used without ad- tionaldiscussion. Allthenewnotionsandstatementsrequiredforsolvingthepr- lemsaregiveneitherontheoreticalgroundsorintheformulationsoftheproblems vii viii Preface straightforwardly. However,sometimesanotionisusedinthetextbeforeitsformal de nition. Forinstance,theWienerandPoissonprocessesareprocesseswithin- pendentincrementsandthusareformallyintroducedinaTheoreticalgroundsfor Chapter5,buttheseprocessesareusedwidelyintheproblemsofChapters2to4. Theauthorsrecommendthatareaderwhocomestoanunknownnotionorobject usetheIndexinorderto ndthecorrespondingformalde nition. Thesamerec- mendationconcernssomestandardabbreviationsandsymbolslistedattheendofthe book. Someproblemsinthebookformcycles:solutionstooneofthemaregrounded onstatementsofothersoronauxiliaryconstructionsdescribedinsomepreceding solutions. Sometimes,onthecontrary,itisproposedtoprovethesamestatement withindifferentproblemsusingessentiallydifferenttechniques. Theauthorsrec- mendareaderpayspeci cattentiontothesefruitfulinternallinksbetweenvarious topicsofthetheoryofstochasticprocesses. Everypartofthebookwascomposedsubstantiallybyoneauthor. Chapters1-6, and16arecomposedbyA. Kulik,Chapters7,12-15,18,and19byYu. Mishura, Chapters 8-10 by A. Pilipenko, Chapter 17 by A. Kukush, and Chapter 20 by D. Gusak. Chapter11waspreparedjointlybyD. GusakandA. Pilipenko. Atthe sametime,everyauthorhasmadeacontributiontootherpartsofthebookbyprop- ingseparateproblemsorcyclesofproblems,improvingpreliminaryversionsoft- oreticalgrounds,andeditingthe naltext. The authors would like to express their deep gratitude to M. Portenko and A. Ivanovfortheircarefulreadingofapreliminaryversionofthebookandva- ablecommentsthatledtosigni cantimprovementofthetext. Theauthorsarealso gratefultoT. Yakovenko,G. Shevchenko,O. Soloveyko, Yu. Kartashov, Yu. K- menko,A. Malenko,andN. Ryabovafortheirassistanceintranslation,preparing lesandpictures,andcomposingthesubjectindexandreferences. Thetheoryofstochasticprocessesisanextendeddiscipline,andtheauthors- derstandthattheproblembookinitscurrentformmaycausecriticalremarksfrom readers,concerningeitherthestructureofthebookorthecontentofseparatech- ters. Whilepublishingtheproblembookinitscurrentform,theauthorsareopenfor remarks,comments,andpropositions,andexpressinadvancetheirgratitudetoall theircorrespondents. Kyiv DmytroGusak December2008 AlexanderKukush AlexeyKulik YuliyaMishura AndreyPilipenko Contents 1 De?nition of stochastic process. Cylinder?-algebra, ?nite-dimensional distributions, the Kolmogorov theorem...1 Theoreticalgrounds ...1 Bibliography...3 Problems...3 Hints...7 AnswersandSolutions...9 2 Characteristics of a stochastic process. Mean and covariance functions. Characteristic functions...11 Theoreticalgrounds ...11 Bibliography...13 Problems...13 Hints...16 AnswersandSolutions...17 3 Trajectories. Modi?cations. Filtrations...21 Theoreticalgrounds ...21 Bibliography...24 Problems...24 Hints...29 AnswersandSolutions...31 4 Continuity. Differentiability. Integrability...33 Theoreticalgrounds ...33 Bibliography...34 Problems...34 Hints...38 AnswersandSolutions...40 ix x Contents 5 Stochastic processes with independent increments. Wiener and Poisson processes. Poisson point measures...
|
You may like...
|