Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
On the history of the book: In the early 1990s several new methods and perspectives in au- mated deduction emerged. We just mention the superposition calculus, meta-term inference and schematization, deductive decision procedures, and automated model building. It was this last ?eld which brought the authors of this book together. In 1994 they met at the Conference on Automated Deduction (CADE-12) in Nancy and agreed upon the general point of view, that semantics and, in particular, construction of models should play a central role in the ?eld of automated deduction. In the following years the deduction groups of the laboratory LEIBNIZ at IMAG Grenoble and the University of Technology in Vienna organized several bilateral projects promoting this topic. This book emerged as a main result of this cooperation. The authors are aware of the fact, that the book does not cover all relevant methods of automated model building (also called model construction or model generation); instead the book focuses on deduction-based symbolic methods for the construction of Herbrand models developed in the last 12 years. Other methods of automated model building, in particular also ?nite model building, are mainly treated in the ?nal chapter; this chapter is less formal and detailed but gives a broader view on the topic and a comparison of di?erent approaches. Howtoreadthisbook: In the introduction we give an overview of automated deduction in a historical context, taking into account its relationship with the human views on formal and informal proofs.
This is the first book on cut-elimination in first-order predicate logic from an algorithmic point of view. Instead of just proving the existence of cut-free proofs, it focuses on the algorithmic methods transforming proofs with arbitrary cuts to proofs with only atomic cuts (atomic cut normal forms, so-called ACNFs). The first part investigates traditional reductive methods from the point of view of proof rewriting. Within this general framework, generalizations of Gentzen's and Sch\"utte-Tait's cut-elimination methods are defined and shown terminating with ACNFs of the original proof. Moreover, a complexity theoretic comparison of Gentzen's and Tait's methods is given. The core of the book centers around the cut-elimination method CERES (cut elimination by resolution) developed by the authors. CERES is based on the resolution calculus and radically differs from the reductive cut-elimination methods. The book shows that CERES asymptotically outperforms all reductive methods based on Gentzen's cut-reduction rules. It obtains this result by heavy use of subsumption theorems in clause logic. Moreover, several applications of CERES are given (to interpolation, complexity analysis of cut-elimination, generalization of proofs, and to the analysis of real mathematical proofs). Lastly, the book demonstrates that CERES can be extended to nonclassical logics, in particular to finitely-valued logics and to G\"odel logic.
This is the first book on cut-elimination in first-order predicate logic from an algorithmic point of view. Instead of just proving the existence of cut-free proofs, it focuses on the algorithmic methods transforming proofs with arbitrary cuts to proofs with only atomic cuts (atomic cut normal forms, so-called ACNFs). The first part investigates traditional reductive methods from the point of view of proof rewriting. Within this general framework, generalizations of Gentzen's and Sch\"utte-Tait's cut-elimination methods are defined and shown terminating with ACNFs of the original proof. Moreover, a complexity theoretic comparison of Gentzen's and Tait's methods is given. The core of the book centers around the cut-elimination method CERES (cut elimination by resolution) developed by the authors. CERES is based on the resolution calculus and radically differs from the reductive cut-elimination methods. The book shows that CERES asymptotically outperforms all reductive methods based on Gentzen's cut-reduction rules. It obtains this result by heavy use of subsumption theorems in clause logic. Moreover, several applications of CERES are given (to interpolation, complexity analysis of cut-elimination, generalization of proofs, and to the analysis of real mathematical proofs). Lastly, the book demonstrates that CERES can be extended to nonclassical logics, in particular to finitely-valued logics and to G\"odel logic.
The History of the Book In August 1992 the author had the opportunity to give a course on resolution theorem proving at the Summer School for Logic, Language, and Information in Essex. The challenge of this course (a total of five two-hour lectures) con sisted in the selection of the topics to be presented. Clearly the first selection has already been made by calling the course "resolution theorem proving" instead of "automated deduction" . In the latter discipline a remarkable body of knowledge has been created during the last 35 years, which hardly can be presented exhaustively, deeply and uniformly at the same time. In this situ ation one has to make a choice between a survey and a detailed presentation with a more limited scope. The author decided for the second alternative, but does not suggest that the other is less valuable. Today resolution is only one among several calculi in computational logic and automated reasoning. How ever, this does not imply that resolution is no longer up to date or its potential exhausted. Indeed the loss of the "monopoly" is compensated by new appli cations and new points of view. It was the purpose of the course mentioned above to present such new developments of resolution theory. Thus besides the traditional topics of completeness of refinements and redundancy, aspects of termination (resolution decision procedures) and of complexity are treated on an equal basis."
On the history of the book: In the early 1990s several new methods and perspectives in au- mated deduction emerged. We just mention the superposition calculus, meta-term inference and schematization, deductive decision procedures, and automated model building. It was this last ?eld which brought the authors of this book together. In 1994 they met at the Conference on Automated Deduction (CADE-12) in Nancy and agreed upon the general point of view, that semantics and, in particular, construction of models should play a central role in the ?eld of automated deduction. In the following years the deduction groups of the laboratory LEIBNIZ at IMAG Grenoble and the University of Technology in Vienna organized several bilateral projects promoting this topic. This book emerged as a main result of this cooperation. The authors are aware of the fact, that the book does not cover all relevant methods of automated model building (also called model construction or model generation); instead the book focuses on deduction-based symbolic methods for the construction of Herbrand models developed in the last 12 years. Other methods of automated model building, in particular also ?nite model building, are mainly treated in the ?nal chapter; this chapter is less formal and detailed but gives a broader view on the topic and a comparison of di?erent approaches. Howtoreadthisbook: In the introduction we give an overview of automated deduction in a historical context, taking into account its relationship with the human views on formal and informal proofs.
The last ten years have seen a gradual fragmentation of the Automated Reas- ing community into various disparate groups, each with its own conference: the Conference on Automated Reasoning (CADE), the International Workshop on First-Order Theorem Proving (FTP), and the International Conference on - tomated Reasoning with Analytic Tableau and Related Methods (TABLEAUX) to name three. During 1999, various members of these three communities d- cussed the idea of holding a joint conference in 2001 to bring our communities togetheragain.Theplanwastoholdaone-o?conferencefor2001, toberepeated ifitprovedasuccess.Thisvolumecontainsthepaperspresentedattheresulting event: the?rstInternationalJointConferenceonAutomatedReasoning(IJCAR 2001), held in Siena, Italy, from June 18 23, 2001. We received 88 research papers and 24 systems descriptions as submissions. Each submission was fully refereed by at least three peers who were asked to writeareportonthequalityofthesubmissions.Thesereportswereaccessibleto membersoftheprogrammecommitteeviaaweb-basedsystemspeciallydesigned for electronic discussions. As a result we accepted 37 research papers and 19 system descriptions, which make up these proceedings. In addition, this volume contains full papers or extended abstracts from the ?ve invited speakers. Tenone-dayworkshopsandfourtutorialswereheldduringIJCAR2001.The automatedtheoremprovingsystemcompetition(CASC)wasorganizedbyGeo? Sutcli?e to evaluate the performance of sound, fully automatic, classical, ?r- order automated theorem proving systems. The third Workshop on Inference in Computational Semantics (ICoS-3) and the 9th Symposium on the Integration of Symbolic Computation and Mechanized Reasoning (CALCULEMUS-2001) were co-located with IJCAR 2001, and held their own associated workshops and produced their own separate proceedings."
This book constitutes the refereed proceedings of the 5th Kurt G
del Colloquium on Computational Logic and Proof Theory, KGC '97,
held in Vienna, Austria, in August 1997.
The Third Kurt G-del Symposium, KGC'93, held in Brno, Czech Republic, August1993, is the third in a series of biennial symposia on logic, theoretical computer science, and philosophy of mathematics. The aim of this meeting wasto bring together researchers working in the fields of computational logic and proof theory. While proof theory traditionally is a discipline of mathematical logic, the central activity in computational logic can be foundin computer science. In both disciplines methods were invented which arecrucial to one another. This volume contains the proceedings of the symposium. It contains contributions by 36 authors from 10 different countries. In addition to 10 invited papers there are 26 contributed papers selected from over 50 submissions.
|
You may like...
Blippi: My First Coloring Book
Editors of Studio Fun International
Paperback
HIV and AIDS: Education, Care And…
A. Van Dyk, E. Tlou, …
Paperback
(5)
The South Carolina Historical and…
South Carolina Historical Society
Hardcover
R918
Discovery Miles 9 180
|