Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 14 of 14 matches in All Departments
The volume "Genres on the Web" has been designed for a wide audience, from the expert to the novice. It is a required book for scholars, researchers and students who want to become acquainted with the latest theoretical, empirical and computational advances in the expanding field of web genre research. The study of web genre is an overarching and interdisciplinary novel area of research that spans from corpus linguistics, computational linguistics, NLP, and text-technology, to web mining, webometrics, social network analysis and information studies. This book gives readers a thorough grounding in the latest research on web genres and emerging document types. The book covers a wide range of web-genre focused subjects, such
as: One of the driving forces behind genre research is the idea of a genre-sensitive information system, which incorporates genre cues complementing the current keyword-based search and retrieval applications."
This book comprises a set of articles that specify the methodology of text mining, describe the creation of lexical resources in the framework of text mining and use text mining for various tasks in natural language processing (NLP). The analysis of large amounts of textual data is a prerequisite to build lexical resources such as dictionaries and ontologies and also has direct applications in automated text processing in fields such as history, healthcare and mobile applications, just to name a few. This volume gives an update in terms of the recent gains in text mining methods and reflects the most recent achievements with respect to the automatic build-up of large lexical resources. It addresses researchers that already perform text mining, and those who want to enrich their battery of methods. Selected articles can be used to support graduate-level teaching. The book is suitable for all readers that completed undergraduate studies of computational linguistics, quantitative linguistics, computer science and computational humanities. It assumes basic knowledge of computer science and corpus processing as well as of statistics.
The aim of this book is to advocate and promote network models of linguistic systems that are both based on thorough mathematical models and substantiated in terms of linguistics. In this way, the book contributes first steps towards establishing a statistical network theory as a theoretical basis of linguistic network analysis the boarder of the natural sciences and the humanities. This book addresses researchers who want to get familiar with theoretical developments, computational models and their empirical evaluation in the field of complex linguistic networks. It is intended to all those who are interested in statistical models of linguistic systems from the point of view of network research. This includes all relevant areas of linguistics ranging from phonological, morphological and lexical networks on the one hand and syntactic, semantic and pragmatic networks on the other. In this sense, the volume concerns readers from many disciplines such as physics, linguistics, computer science and information science. It may also be of interest for the upcoming area of systems biology with which the chapters collected here share the view on systems from the point of view of network analysis.
The handbook "Technical Communication" brings together a variety of topics which range from the role of technical media in human communication to the linguistic, multimodal enhancement of present-day technologies. It covers the area of computer-mediated text, voice and multimedia communication as well as of technical documentation. In doing so, the handbook takes professional and private communication into account. Special emphasis is put on technical communication by means of web 2.0 technologies and its standardization and evaluation in system development. In summary, the handbook deals with theoretical issues of technical communication and its practical impact on the development and usage of text and speech technologies.
This book presents recent developments in automatic text analysis. Providing an overview of linguistic modeling, it collects contributions of authors from a multidisciplinary area that focus on the topic of automatic text analysis from different perspectives. It includes chapters on cognitive modeling and visual systems modeling, and contributes to the computational linguistic and information theoretical grounding of automatic text analysis.
For over a decade, complex networks have steadily grown as an important tool across a broad array of academic disciplines, with applications ranging from physics to social media. A tightly organized collection of carefully-selected papers on the subject, Towards an Information Theory of Complex Networks: Statistical Methods and Applications presents theoretical and practical results about information-theoretic and statistical models of complex networks in the natural sciences and humanities. The book's major goal is to advocate and promote a combination of graph-theoretic, information-theoretic, and statistical methods as a way to better understand and characterize real-world networks. This volume is the first to present a self-contained, comprehensive overview of information-theoretic models of complex networks with an emphasis on applications. As such, it marks a first step toward establishing advanced statistical information theory as a unified theoretical basis of complex networks for all scientific disciplines and can serve as a valuable resource for a diverse audience of advanced students and professional scientists. While it is primarily intended as a reference for research, the book could also be a useful supplemental graduate text in courses related to information science, graph theory, machine learning, and computational biology, among others.
Researchers in many disciplines have been concerned with modeling textual data in order to account for texts as the primary information unit of written communication. The book "Modelling, Learning and Processing of Text-Technological Data Structures" deals with this challenging information unit. It focuses on theoretical foundations of representing natural language texts as well as on concrete operations of automatic text processing. Following this integrated approach, the present volume includes contributions to a wide range of topics in the context of processing of textual data. This relates to the learning of ontologies from natural language texts, the annotation and automatic parsing of texts as well as the detection and tracking of topics in texts and hypertexts. In this way, the book brings together a wide range of approaches to procedural aspects of text technology as an emerging scientific discipline.
The aim of this book is to advocate and promote network models of linguistic systems that are both based on thorough mathematical models and substantiated in terms of linguistics. In this way, the book contributes first steps towards establishing a statistical network theory as a theoretical basis of linguistic network analysis the boarder of the natural sciences and the humanities. This book addresses researchers who want to get familiar with theoretical developments, computational models and their empirical evaluation in the field of complex linguistic networks. It is intended to all those who are interested in statistical models of linguistic systems from the point of view of network research. This includes all relevant areas of linguistics ranging from phonological, morphological and lexical networks on the one hand and syntactic, semantic and pragmatic networks on the other. In this sense, the volume concerns readers from many disciplines such as physics, linguistics, computer science and information science. It may also be of interest for the upcoming area of systems biology with which the chapters collected here share the view on systems from the point of view of network analysis.
This book comprises a set of articles that specify the methodology of text mining, describe the creation of lexical resources in the framework of text mining and use text mining for various tasks in natural language processing (NLP). The analysis of large amounts of textual data is a prerequisite to build lexical resources such as dictionaries and ontologies and also has direct applications in automated text processing in fields such as history, healthcare and mobile applications, just to name a few. This volume gives an update in terms of the recent gains in text mining methods and reflects the most recent achievements with respect to the automatic build-up of large lexical resources. It addresses researchers that already perform text mining, and those who want to enrich their battery of methods. Selected articles can be used to support graduate-level teaching. The book is suitable for all readers that completed undergraduate studies of computational linguistics, quantitative linguistics, computer science and computational humanities. It assumes basic knowledge of computer science and corpus processing as well as of statistics.
Researchers in many disciplines have been concerned with modeling textual data in order to account for texts as the primary information unit of written communication. The book "Modelling, Learning and Processing of Text-Technological Data Structures" deals with this challenging information unit. It focuses on theoretical foundations of representing natural language texts as well as on concrete operations of automatic text processing. Following this integrated approach, the present volume includes contributions to a wide range of topics in the context of processing of textual data. This relates to the learning of ontologies from natural language texts, the annotation and automatic parsing of texts as well as the detection and tracking of topics in texts and hypertexts. In this way, the book brings together a wide range of approaches to procedural aspects of text technology as an emerging scientific discipline.
The description, automatic identification and further processing of web genres is a novel field of research in computational linguistics, NLP and related areas such as text-technology, digital humanities and web mining. One of the driving forces behind this research is the idea of genre-enabled search engines which enable users to additionally specify web genres that the documents to be retrieved should comply with (e.g., personal homepage, weblog, scientific article etc.). This book offers a thorough foundation of this upcoming field of research on web genres and document types in web-based social networking. It provides theoretical foundations of web genres, presents corpus linguistic approaches to their analysis and computational models for their classification. This includes research in the areas of web genre identification, web genre modelling and related fields such as genres and registers in web based communication social software-based document networks web genre ontologies and classification schemes text-technological models of web genres web content, structure and usage mining web genre classification web as corpus. The book addresses researchers who want to become acquainted with theoretical developments, computational models and their empirical evaluation in this field of research. It also addresses researchers who are interested in standards for the creation of corpora of web documents. Thus, the book concerns readers from many disciplines such as corpus linguistics, computational linguistics, text-technology and computer science.
This book presents recent developments in automatic text analysis. Providing an overview of linguistic modeling, it collects contributions of authors from a multidisciplinary area that focus on the topic of automatic text analysis from different perspectives. It includes chapters on cognitive modeling and visual systems modeling, and contributes to the computational linguistic and information theoretical grounding of automatic text analysis.
In diesem Band prasentieren Medien- und Informationswissenschaftler, Netzwerkforscher aus Informatik, Texttechnologie und Physik, Soziologen und Linguisten interdisziplinar Aspekte der Erforschung komplexer Mehrebenen-Netzwerke. Im Zentrum ihres Interesses stehen Untersuchungen zum Zusammenhang zwischen sozialen und sprachlichen Netzwerken und ihrer Dynamiken, aufgezeigt an empirischen Beispielen aus dem Bereich des Web 2.0, aber auch an historischen Dokumentenkorpora sowie an Rezeptions-Netzwerken aus Kunst- und Literaturwissenschaft."
|
You may like...
How Did We Get Here? - A Girl's Guide to…
Mpoomy Ledwaba
Paperback
(1)
|