![]() |
![]() |
Your cart is empty |
||
Showing 1 - 5 of 5 matches in All Departments
This book summarizes the main advances in the field of nonlinear evolution and pattern formation caused by longwave instabilities in fluids. It will allow readers to master the multiscale asymptotic methods and become familiar with applications of these methods in a variety of physical problems. Longwave instabilities are inherent to a variety of systems in fluid dynamics, geophysics, electrodynamics, biophysics, and many others. The techniques of the derivation of longwave amplitude equations, as well as the analysis of numerous nonlinear equations, are discussed throughout. This book will be of value to researchers and graduate students in applied mathematics, physics, and engineering, in particular within the fields of fluid mechanics, heat and mass transfer theory, and nonlinear dynamics.
The textbook presents a rather unique combination of topics in ODEs, examples and presentation style. The primary intended audience is undergraduate (2nd, 3rd, or 4th year) students in engineering and science (physics, biology, economics). The needed pre-requisite is a mastery of single-variable calculus. A wealth of included topics allows using the textbook in up to three sequential, one-semester ODE courses. Presentation emphasizes the development of practical solution skills by including a very large number of in-text examples and end-of-section exercises. All in-text examples, be they of a mathematical nature or a real-world examples, are fully solved, and the solution logic and flow are explained. Even advanced topics are presented in the same undergraduate-friendly style as the rest of the textbook. Completely optional interactive laboratory-type software is included with the textbook.
Partial Differential Equations: Analytical Methods and Applications covers all the basic topics of a Partial Differential Equations (PDE) course for undergraduate students or a beginners’ course for graduate students. It provides qualitative physical explanation of mathematical results while maintaining the expected level of it rigor. This text introduces and promotes practice of necessary problem-solving skills. The presentation is concise and friendly to the reader. The "teaching-by-examples" approach provides numerous carefully chosen examples that guide step-by-step learning of concepts and techniques. Fourier series, Sturm-Liouville problem, Fourier transform, and Laplace transform are included. The book’s level of presentation and structure is well suited for use in engineering, physics and applied mathematics courses. Highlights: Offers a complete first course on PDEs The text’s flexible structure promotes varied syllabi for courses Written with a teach-by-example approach which offers numerous examples and applications Includes additional topics such as the Sturm-Liouville problem, Fourier and Laplace transforms, and special functions The text’s graphical material makes excellent use of modern software packages Features numerous examples and applications which are suitable for readers studying the subject remotely or independently
Partial Differential Equations: Analytical Methods and Applications covers all the basic topics of a Partial Differential Equations (PDE) course for undergraduate students or a beginners' course for graduate students. It provides qualitative physical explanation of mathematical results while maintaining the expected level of it rigor. This text introduces and promotes practice of necessary problem-solving skills. The presentation is concise and friendly to the reader. The "teaching-by-examples" approach provides numerous carefully chosen examples that guide step-by-step learning of concepts and techniques. Fourier series, Sturm-Liouville problem, Fourier transform, and Laplace transform are included. The book's level of presentation and structure is well suited for use in engineering, physics and applied mathematics courses. Highlights: Offers a complete first course on PDEs The text's flexible structure promotes varied syllabi for courses Written with a teach-by-example approach which offers numerous examples and applications Includes additional topics such as the Sturm-Liouville problem, Fourier and Laplace transforms, and special functions The text's graphical material makes excellent use of modern software packages Features numerous examples and applications which are suitable for readers studying the subject remotely or independently
The book deals with modern methods of nonlinear stability theory applied to problems of continuous media mechanics in the presence of interfaces, with applications to materials science, chemical engineering, heat transfer technologies, as well as in combustion and other reaction-diffusion systems. Interfaces play a dominant role at small scales, and their correct modeling is therefore also crucial in the rapidly expanding fields of microfluidics and nanotechnologies. To this aim, the book combines contributions of eminent specialists in the field, with a special emphasis on rigorous and predictive approaches. Other goals of this volume are to allow the reader to identify key problems of high scientific value, and to see the similarity between a variety of seemingly different physical problems.
|
![]() ![]() You may like...
How Did We Get Here? - A Girl's Guide to…
Mpoomy Ledwaba
Paperback
![]()
Allergy Sense For Families - A Practical…
Meg Faure, Sarah Karabus, …
Paperback
Statutes and Regulations of the Supreme…
Scottish Rite (Masonic Order) Suprem
Hardcover
R820
Discovery Miles 8 200
I Promise It Won't Always Hurt Like This…
Clare Mackintosh
Paperback
|